通过文件夹输入图片进行头部姿态检测(dlib+opencv)

该博客介绍了作者在实验室项目中如何利用dlib和OpenCV库进行头部运动的Yaw、Pitch、Roll角度检测。通过摄像头捕获图像,检测并识别68个面部关键点,进而计算出头部的旋转角度。目前实现了从静态图片到姿态估计的过程,下一步目标是实现实时视频流的处理。
摘要由CSDN通过智能技术生成

–20220430 一些项目笔记

我们实验室最近在做项目,具体的实验题目可能不是很能和大家分享,我就单纯讲一下我负责这一部分的内容,我们具有三个技术组,其中每个人负责的部分是不一样的,我这边是需要,通过摄像头进行头部运动时的Yaw,Pitch,Roll
在这里插入图片描述
但我目前只进行到通过图像检测,就是通过图片的输入,然后就可以对图片进行一个以上三个数据的检测,目前我参考的代码是
dlib_opencv_face_pose_estimation
源码部分如下:

import os
import cv2
import numpy as np
import dlib
import time
import math

data_dir = r"D:\Dataset"
//这个是我自己改的代码
//为我的文件地址,可以自己设定
save_dir = r"...\results"
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(r".\shape_predictor_68_face_landmarks.dat")
POINTS_NUM_LANDMARK = 68


# 获取最大的人脸
def _largest_face(dets):
    if len(dets) == 1:
        return 0

    face_areas = [(det.right() - det.left()) * (det.bottom() - det.top()) for det in dets]

    largest_area = face_areas[0]
    largest_index = 0
    for index in range(1, len(dets)):
        if face_areas[index] > largest_area:
            largest_index = index
            largest_area = face_areas[index]

    print("largest_face index is {} in {} faces".format(largest_index, len(dets)))

    return largest_index


# 从dlib的检测结果抽取姿态估计需要的点坐标
def get_image_points_from_landmark_shape(landmark_shape):
    if landmark_shape.num_parts != POINTS_NUM_LANDMARK:
        print("ERROR:landmark_shape.num_parts-{}".format(landmark_shape.num_parts))
        return -1, None

    # 2D image points. If you change the image, you need to change vector

    image_points = np.array([
        (landmark_shape.part(17).x, landmark_shape.part(17).y),  # 17 left brow left corner
        (landmark_shape.part(21).x, landmark_shape.part(21).y),  # 21 left brow right corner
        (landmark_shape.part(22).x, landmark_shape.part(22).y),  # 22 right brow left corner
        (landmark_shape.part(26).x, landmark_shape.part(26).y),  # 26 right brow right corner
        (landmark_shape.part(36).x, landmark_shape.part(36).y),  # 36 left eye left corner
        (landmark_shape.part(39).x, landmark_shape.part(39).y),  # 39 left eye right corner
        (landmark_shape.part(42).x, landmark_shape.part(42).y),  # 42 right eye left corner
        (landmark_shape.part(45).x, landmark_shape.part(45).y),  # 45 right eye right corner
        (landmark_shape.part(31).x, landmark_shape.part(31).y),  # 31 nose left corner
        (landmark_shape.part(35).x, landmark_shape.part(35).y),  # 35 nose right corner
        (landmark_shape.part(48).x, landmark_shape.part(48).y),  # 48 mouth left corner
        (landmark_shape.part(54).x, landmark_shape.part(54).y),  # 54 mouth right corner
        (landmark_shape.part(57).x, landmark_shape.part(57).y),  # 57 mouth central bottom corner
        (landmark_shape.part(8).x, landmark_shape.part(8).y),  # 8 chin corner
    ], dtype="double")
    return 0, image_points


# 用dlib检测关键点,返回姿态估计需要的几个点坐标
def get_image_points(img):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 图片调整为灰色
    dets = detector(img, 0)

    if 0 == len(dets):
        print("ERROR: found no face")
        return -1, None
    largest_index = _largest_face(dets)
    face_rectangle = dets[largest_index]

    landmark_shape = predictor(img, face_rectangle)

    return get_image_points_from_landmark_shape(landmark_shape)


# 获取旋转向量和平移向量
def get_pose_estimation(img_size, image_points):
    # 3D model points.
    model_points = np.array([
        (6.825897, 6.760612, 4.402142),  # 33 left brow left corner
        (1.330353, 7.122144, 6.903745),  # 29 left brow right corner
        (-1.330353, 7.122144, 6.903745),  # 34 right brow left corner
        (-6.825897, 6.760612, 4.402142),  # 38 right brow right corner
        (5.311432, 5.485328, 3.987654),  # 13 left eye left corner
        (1.789930, 5.393625, 4.413414),  # 17 left eye right corner
        (-1.789930, 5.393625, 4.413414),  # 25 right eye left corner
        (-5.311432, 5.485328, 3.987654),  # 21 right eye right corner
        (2.005628, 1.409845, 6.165652),  # 55 nose left corner
        (-2.005628, 1.409845, 6.165652),  # 49 nose right corner
        (2.774015, -2.080775, 5.048531),  # 43 mouth left corner
        (-2.774015, -2.080775, 5.048531),  # 39 mouth right corner
        (0.000000, -3.116408, 6.097667),  # 45 mouth central bottom corner
        (0.000000, -7.415691, 4.070434)  # 6 chin corner
    ])
    # Camera internals

    focal_length = img_size[1]
    center = (img_size[1] / 2, img_size[0] / 2)
    camera_matrix = np.array(
        [[focal_length, 0, center[0]],
         [0, focal_length, center[1]],
         [0, 0, 1]], dtype="double"
    )

    dist_coeffs = np.array([7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000],
                           dtype="double")  # Assuming no lens distortion

    (success, rotation_vector, translation_vector) = cv2.solvePnP(model_points, image_points, camera_matrix,
                                                                  dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE)

    # print("Rotation Vector:\n {}".format(rotation_vector))
    # print("Translation Vector:\n {}".format(translation_vector))
    return success, rotation_vector, translation_vector, camera_matrix, dist_coeffs


# 从旋转向量转换为欧拉角
def get_euler_angle(rotation_vector):
    # calculate rotation angles
    theta = cv2.norm(rotation_vector, cv2.NORM_L2)

    # transformed to quaterniond
    w = math.cos(theta / 2)
    x = math.sin(theta / 2) * rotation_vector[0][0] / theta
    y = math.sin(theta / 2) * rotation_vector[1][0] / theta
    z = math.sin(theta / 2) * rotation_vector[2][0] / theta

    ysqr = y * y
    # pitch (x-axis rotation)
    t0 = 2.0 * (w * x + y * z)
    t1 = 1.0 - 2.0 * (x * x + ysqr)

    # print('t0:{}, t1:{}'.format(t0, t1))
    pitch = math.atan2(t0, t1)

    # yaw (y-axis rotation)
    t2 = 2.0 * (w * y - z * x)
    if t2 > 1.0:
        t2 = 1.0
    if t2 < -1.0:
        t2 = -1.0
    yaw = math.asin(t2)

    # roll (z-axis rotation)
    t3 = 2.0 * (w * z + x * y)
    t4 = 1.0 - 2.0 * (ysqr + z * z)
    roll = math.atan2(t3, t4)

    print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))

    # 单位转换:将弧度转换为度
    pitch_degree = int((pitch / math.pi) * 180)
    yaw_degree = int((yaw / math.pi) * 180)
    roll_degree = int((roll / math.pi) * 180)

    return 0, pitch, yaw, roll, pitch_degree, yaw_degree, roll_degree


def get_pose_estimation_in_euler_angle(landmark_shape, im_szie):
    try:
        ret, image_points = get_image_points_from_landmark_shape(landmark_shape)
        if ret != 0:
            print('get_image_points failed')
            return -1, None, None, None

        ret, rotation_vector, translation_vector, camera_matrix, dist_coeffs = get_pose_estimation(im_szie,
                                                                                                   image_points)
        if ret != True:
            print('get_pose_estimation failed')
            return -1, None, None, None

        ret, pitch, yaw, roll = get_euler_angle(rotation_vector)
        if ret != 0:
            print('get_euler_angle failed')
            return -1, None, None, None

        euler_angle_str = 'Pitch:{}, Yaw:{}, Roll:{}'.format(pitch, yaw, roll)
        print(euler_angle_str)
        return 0, pitch, yaw, roll

    except Exception as e:
        print('get_pose_estimation_in_euler_angle exception:{}'.format(e))
        return -1, None, None, None


if __name__ == '__main__':
    # Read Image
    image_names = os.listdir(data_dir)
    for index, image_name in enumerate(image_names):
        print("Image:", image_name)
        imgpath = data_dir + '\' + image_name
        im = cv2.imread(imgpath)
        size = im.shape

        if size[0] > 700:
            h = size[0] / 3
            w = size[1] / 3
            im = cv2.resize(im, (int(w), int(h)), interpolation=cv2.INTER_CUBIC)
            size = im.shape

        ret, image_points = get_image_points(im)
        if ret != 0:
            print('get_image_points failed')
            continue

        ret, rotation_vector, translation_vector, camera_matrix, dist_coeffs = get_pose_estimation(size, image_points)
        if ret != True:
            print('get_pose_estimation failed')
            continue

        ret, pitch, yaw, roll, pitch_degree, yaw_degree, roll_degree = get_euler_angle(rotation_vector)

        draw = im.copy()
        # Yaw:
        if yaw_degree < 0:
            output_yaw = "face turns left:" + str(abs(yaw_degree)) + " degrees"
            # cv2.putText(draw,output_yaw,(20,40),cv2.FONT_HERSHEY_SIMPLEX,.5,(0,255,0))
            print(output_yaw)
        if yaw_degree == 0:
            print("face doesn't turns left or right")
        if yaw_degree > 0:
            output_yaw = "face turns right:" + str(abs(yaw_degree)) + " degrees"
            # cv2.putText(draw,output_yaw,(20,40),cv2.FONT_HERSHEY_SIMPLEX,.5,(0,255,0))
            print(output_yaw)
        # Pitch:
        if pitch_degree > 0:
            output_pitch = "face downwards:" + str(abs(pitch_degree)) + " degrees"
            # cv2.putText(draw,output_pitch,(20,80),cv2.FONT_HERSHEY_SIMPLEX,.5,(0,255,0))
            print(output_pitch)
        if pitch_degree == 0:
            print("face not downwards or upwards")
        if pitch_degree < 0:
            output_pitch = "face upwards:" + str(abs(pitch_degree)) + " degrees"
            # cv2.putText(draw,output_pitch,(20,80),cv2.FONT_HERSHEY_SIMPLEX,.5,(0,255,0))
            print(output_pitch)
        # Roll:
        if roll_degree < 0:
            output_roll = "face bends to the right:" + str(abs(roll_degree)) + " degrees"
            # cv2.putText(draw,output_roll,(20,120),cv2.FONT_HERSHEY_SIMPLEX,.5,(0,255,0))
            print(output_roll)
        if roll_degree == 0:
            print("face doesn't bend to the right or the left.")
        if roll_degree > 0:
            output_roll = "face bends to the left:" + str(abs(roll_degree)) + " degrees"
            # cv2.putText(draw,output_roll,(20,120),cv2.FONT_HERSHEY_SIMPLEX,.5,(0,255,0))
            print(output_roll)
        # Initial status:
        if abs(yaw) < 0.00001 and abs(pitch) < 0.00001 and abs(roll) < 0.00001:
            # cv2.putText(draw,"Initial ststus",(20,40),cv2.FONT_HERSHEY_SIMPLEX,.5,(0,255,0))
            print("Initial ststus")
        # cv2.imwrite(save_dir+"\"+os.path.splitext(imgpath)[0]+'_pose_estimate.jpg',draw)

这份代码是我改了一下的代码,我将文件的输入地址进行了改动,建议找这种比较简单的地址,嘿嘿,好找一点
在这里插入图片描述
每张人脸检测出68个关键点(人脸轮廓17个点,左右眉毛各5个点,左右眼睛各6个点,鼻子9个点,嘴巴20个点)
在这里插入图片描述
在这里插入图片描述
以下是效果图:CSDN上面熟人太多了!所以没用自己的照片,哈哈哈哈哈,用了一张我老公的照片
在这里插入图片描述
这边的话,就是我这张照片的三个需要测量的数据
在这里插入图片描述


这个的话,还是不太完善,我想实现的效果,是能够通过摄像头来进行一个实时结果的输出,通过我搜的一些资料,这种效果需要我们设置循环,然后类似对于图片来进行一个检测
慢慢改吧,麻烦人工智能大佬教教我!!!!!

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值