最小费用流的最短路径算法和Ford单源最短路径算法(图解)

本文介绍了最小费用流的最短路径算法,通过图例展示了如何从0流开始,逐步分配流量至最短路径,直至达到指定流量v0。同时,文章讨论了Ford算法在寻找单源最短路径的优势,指出其与Floyd和Dijkstra算法的差异,包括在处理无负回路图时的空间效率和时间效率优势。
摘要由CSDN通过智能技术生成

屈婉玲《算法设计与分析》第2版第7章网络流算法学习笔记。

概述

最小费用流的负回路算法,是先任意分配流量v0,再将流量调整到权值较小的边上,参考:

基于Floyd算法的最小费用流的负回路算法(图解)

而最小费用流的最短路径算法,则是从0流开始,往最短路径上分配流量,直到流量达到v0为止。

最小费用流的最短路径算法图例

容量-费用网络,初始分配0流:
在这里插入图片描述
找出残余容量网络上的最短路径:s->2->t(距离为4),分配5个单位流量,得到f1:
在这里插入图片描述
更新残余网络找出最短路径:s->1->2->t (距离为5),分配1个单位流量,得到f2:
在这里插入图片描述
更新残余网络找出最短路径:s->1->t (距离为6),分配2个单位流量(v0-f2=2),得到f3:
在这里插入图片描述
至此流量达到v0,f3即为所求。

伪代码

1. f ← 0
2. 构造N(f)
3. 调用Floyd算法计算N(f)中s-t最短路径
4. if N(f)无s-t路径 then return “无流量v0的可行流”  //f是最大流,且v(f)<v0
5.N(f)的s-t增广路径中找出最短路径
6. 为最短路径尽可能分配流量,且不超过v0,f ← f1
7.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值