畅通工程续
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 58519 Accepted Submission(s): 21986
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int N,M;
int cost[210][210];
int dp[210];
const int inf=0x3f3f3f3f;
void init()
{
for(int i=0;i<=N;i++)
{
for(int j=0;j<=N;j++)
cost[i][j]=cost[j][i]=dp[i]=inf;
}
}
void Dijkstra(int s)
{
int vis[210]={0};
int i,j,pos;
for(i=0;i<N;i++)
dp[i]=cost[s][i];//s是重点
vis[s]=1;
dp[s]=0;
int mi;
for(i=0;i<N;i++)
{
mi=inf;
for(j=0;j<N;j++)
{
if(dp[j]<mi&&!vis[j])
{
mi=dp[j];
pos=j;
}
}
if(mi==inf)
break;
vis[pos]=1;//pos重点
for(j=0;j<N;j++)
{
if(dp[pos]+cost[pos][j]<dp[j]&&!vis[j])
dp[j]=dp[pos]+cost[pos][j];
}
}
}
int main()
{
int x,y,z;
while(cin>>N>>M)
{
init();
for(int i=0;i<M;i++)
{
scanf("%d%d%d",&x,&y,&z);
if(cost[x][y]>z)
cost[x][y]=cost[y][x]=z;
}
int st,ed;
scanf("%d%d",&st,&ed);
Dijkstra(st);
if (dp[ed]==inf)
printf("-1\n");
else
printf("%d\n",dp[ed]);
}
return 0;
}