hdu 1874 畅通工程续

点击打开链接

畅通工程续

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 58519    Accepted Submission(s): 21986


Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
 

Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
 

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
 

Sample Input
  
  
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
 

Sample Output
  
  
2 -1
 
自己写的最短路,终于ac了。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int N,M;
int cost[210][210];
int dp[210];
const int inf=0x3f3f3f3f;
void init()
{
	for(int i=0;i<=N;i++)
	{
		for(int j=0;j<=N;j++)
			cost[i][j]=cost[j][i]=dp[i]=inf;
	}
}
void Dijkstra(int s)
{
	int vis[210]={0};
	int i,j,pos;
	for(i=0;i<N;i++)
		dp[i]=cost[s][i];//s是重点
	vis[s]=1;
	dp[s]=0;
	int mi;
	for(i=0;i<N;i++)
	{
		mi=inf;
		for(j=0;j<N;j++)
		{
			if(dp[j]<mi&&!vis[j])
			{
				mi=dp[j];
				pos=j;
			}
		}
		if(mi==inf)
			break;
		vis[pos]=1;//pos重点
		for(j=0;j<N;j++)
		{
			if(dp[pos]+cost[pos][j]<dp[j]&&!vis[j])
				dp[j]=dp[pos]+cost[pos][j];
		}
	}
}
int main()
{
	int x,y,z;
	while(cin>>N>>M)
	{
		init();
		for(int i=0;i<M;i++)
		{
			scanf("%d%d%d",&x,&y,&z);
			if(cost[x][y]>z)
				cost[x][y]=cost[y][x]=z;
		}
		int st,ed;
		scanf("%d%d",&st,&ed);
		Dijkstra(st);
		if (dp[ed]==inf)
			printf("-1\n");
		else
			printf("%d\n",dp[ed]);
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值