图表示学习-GCN 19年记录

论文题目

SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS_ICLR17

 

论文链接

https://openreview.net/pdf?id=SJU4ayYglicon-default.png?t=L9C2https://openreview.net/pdf?id=SJU4ayYgl

论文背景

本文提出了一种图卷积网络(graph covolutional networks, GCNs),该网络是传统卷积算法在图结构数据上的一个变体,可以直接用于处理图结构数据。从本质上讲,GCN 是谱图卷积(spectral graph convolution) 的局部一阶近似(localized first-order approximation)。

GCN的另一个特点在于其模型规模会随图中边的数量的增长而线性增长

总的来说,GCN 可以用于对局部图结构与节点特征进行编码。

G=(ν,ε)表示一个图,ν,ε分别表示相应的节点集与边集,ν 表示图中的节点, ε 表示图中的边。

A 表示图的邻接矩阵(adjacency matrix)。

D 表示图的度矩阵(degree matrix)。

L 表示图的拉普拉斯矩阵(Laplacian matrix),表示图的归一化拉普拉斯矩阵。 

 1. 谱图卷积

从本质上说,GCN是谱图卷积的一阶局部近似。

 

gθ' 是滤波器,K表示切比雪夫多项式Tk(x)的 k阶截断, 

λmax表示L的最大特征值。 通过这一近似,可以发现,谱图卷积不再依赖于整个图,而只是依赖于距离中心节点k步之内的节点(即k 阶邻居)

 2.Layer-wise线性模型(分层线性模型)

近似的谱图卷积虽然可以建立起 K阶邻居的依赖,然而,却仍然需要在上进行 K阶运算。在实际过程中,这一运算的代价也是非常大的。为了降低运算代价,本文进一步简化了该运算,即限定 K=1

此时,谱图卷积可以近似为 的线性函数。

但是当设置K=1时,只能是1阶邻居的依赖;

为了解决这一限制,可以通过堆积多层图卷积网络建立 K阶邻居的依赖;而且,这样做的另一个优势是在建立 k 阶邻居的依赖时,不需要受到切比雪夫多项式的限制。

为了进一步简化运算,在GCN的线性模型中,本文定义 λmax = 2。此时,可以得到图谱卷积的一阶线性近似: 

然后通过对参数进行约束来避免过拟合,并进一步简化运算复杂度。例如,可以令  ,

从而得到

的特征值范围为[0,2],这意味着,当不停地重复该操作时(网络非常深时),可能会引起梯度爆炸或梯度消失。为了减弱这一问题,本文提出了一种 renormalization trick(重整化技巧) 

当图中每个节点的表示不是单独的标量而是一个大小为C的向量时,可以使用其变体进行处理:    

表示参数矩阵,为相应的卷积结果。此时,每个节点的节点表示被更新成了一个新的 F维向量,该 F维向量包含了相应的一阶邻居上的信息。

Model

对于一个大图(例如“文献引用网络”),有时需要对其上的节点进行分类。然而,在该图上,仅有少量的节点是有标注的。此时,需要依靠这些已标注的节点来对那些没有标注过的节点进行分类,此即半监督节点分类问题

在这类问题中,大部分节点都没有已标注的标签,GCN通过一个简单的映射函数 f(X,A),可以将节点的局部信息汇聚到该节点中,然后仅使用那些有标注的节点计算有监督的损失即可,从而无需使用图拉普拉斯正则。

本文使用了一个两层的GCN进行节点分类。模型结构图如下图所示

其具体流程为: (1)首先获取节点的特征表示X 并计算邻接矩阵

(2)将其输入到一个两层的GCN网络中,得到每个标签的预测结果: 

 

对于半监督分类问题,使用所有有标签节点上的期望交叉熵作为损失函数:yL代表有标签的节点集 

实验数据集

针对半监督节点分类问题,本文主要进行了两个实验:

一是在文献引用网络上的实验,二是在知识图谱上的实验(NELL)。

在文献引用网络中,边使用引用链构建,节点表示相应的文档。

本文共使用了三个引用网络数据集:Citeseer、Cora与Pubmed。其数据统计的结果如下表所示(Label rate表示有标注节点的比例): 

 

 

 实验效果

 

总结和思考

本文提出了一种图卷积神经网络(GCN),该网络可以被有效地用于处理图结构的数据。

图卷积神经网络具有几个特点:

(1)局部特性:GCN关注的是图中以某节点为中心,K阶邻居之内的信息;

(2)一阶特性:经过多种近似之后,GCN变成了一个一阶模型。也就是说,单层的GCN可以被用于处理图中一阶邻居上的信息;若要处理K阶邻居,可以采用多层GCN来实现;

(3)参数共享:对于每个节点,其上的滤波器参数 W 是共享的,这也是其被称作图卷积网络的原因之一。 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值