【网络表示学习】metapath2vec

metapath2vec是一种针对异质图的网络表示学习方法,利用meta-path-based随机游走和异质skip-gram模型,捕捉不同节点间的语义和结构联系。文章介绍了Heterogeneous Skip-Gram模型、Meta-Path-Based Random Walks以及metapath2vec++的异质负采样方法,旨在高效预测节点的异质邻居。
摘要由CSDN通过智能技术生成

题目:metapath2vec: Scalable Representation Learning for Heterogeneous Networks

作者:Yuxiao Dong, Nitesh V. Chawla and Ananthram Swami

来源:KDD 2017

源码:https://ericdongyx.github.io/metapath2vec/m2v.html

当前的许多网络表示学习方法主要是针对同质网络的。本文提出一种的专门针对异质图的网络表示学习方法,能够同时捕捉不同类型节点之间的语义结构联系。metapath2vec使用meta-path-based随机游走构建节点的异质邻居,然后使用一个异质skip-gram训练模型,建模结构上和语义上相近的节点。metapath2vec++进一步提出一种异质负采样方法,准确高效地预测一个节点的异质邻居。

核心问题

  1. 在异质图中如何有效地在不同类型的节点中保留上下文
  2. 随机游走是否可以用于异质图
  3. skip-gram是否可以用于异质图

模型

定义一个异质网络 G = ( V , E , T ) G=(V, E, T) G=(V,E,T),其中每个节点和边的类型由映射函数定义 ϕ ( v ) : V → T V \phi(v) : V \rightarrow T_{V} ϕ(v):VTV φ ( e ) : E → T E \varphi(e) : E \rightarrow T_{E} φ(e):ETE T V T_{V} TV T E T_{E} TE分别代表相应类型的集合。 ∣ T V ∣ + ∣ T E ∣ > 2 \left|T_{V}\right|+\left|T_{E}\right|>2 TV+TE>2 (不只一种类型)。

Heterogeneous Skip-Gram

对于异质图 G = ( V , E , T ) G=(V, E, T) G=(V,E,T) ∣ T V ∣ > 1 |T_V|>1 TV>1 ,metapath2vec通过skip-gram模型学习网络表示。给定一节点 v v v,最大化其异质上下文 N t ( v ) N_t(v) Nt(v) t ∈ T V t\in T_V tTV(节点 v v v t t h t^{th} tth类型邻居节点)的概率:
(2) arg ⁡ max ⁡ θ ∑ v ∈ V ∑ t ∈ T V ∑ c t ∈ N t ( v ) log ⁡ p ( c t ∣ v ; θ ) \arg \max _{\theta} \sum_{v \in V} \sum_{t \in T_{V}} \sum_{c_{t} \in N_{t}(v)} \log p\left(c_{t} | v ; \theta\right){\tag 2} argθmaxvVtTVctNt(v)logp(ctv;θ)(2)
条件概率定义为softmax函数
p ( c t ∣ v ; θ ) = e X c l ⋅ X v ∑ u ∈ V e X u ⋅ X v p\left(c_{t} | v ; \theta\right)=\frac{e^{X_{c_{l}} \cdot X_{v}}}{\sum_{u \in V} e^{X_{u} \cdot X_{v}}} p(ctv;θ)=uVeXuXveX

  • 2
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值