粒子群算法(PSO)-燃烧反应动力学


提示1:此篇只概述理论,后续再叙述粒子群算法在燃烧反应机理简化中的思想
提示2:文章内容仅供参考

概要

**粒子群优化算法(PSO):**是1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。
**粒子群算法的优势:**在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。

整体流程

  1. 初始化

    • 随机初始化一群粒子(候选解),每个粒子代表问题的一个潜在解。
    • 为每个粒子分配一个随机位置和速度。
    • 计算每个粒子的适应度(目标函数值)。
  2. 设置个体和全局最优

    • 对于每个粒子,记录其找到的最优位置(个体最优,记为pbest)。
    • 确定整个粒子群中所有粒子的最优位置(全局最优,记为gbest)。
  3. 迭代过程

    • 对于每次迭代:
      a. 更新速度:根据当前位置、个体最优位置和全局最优位置,更新每个粒子的速度。速度更新公式通常如下:速度公式

      b. 更新位置:根据新的速度更新每个粒子的位置。
      位置公式
      c. 边界处理:如果粒子的位置超出了搜索空间的边界,将

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值