微分方程基础

<script src="http://widgets.amung.us/classic.js" type="text/javascript"></script> <script type="text/javascript"> </script>

微分方程基础

1. 初始值问题

 

    微分方程描述了未知数和它的导数之间的关系。解一个微分方程就是要找到一个关系来满足这个方程,有时候也要同时满足一些附加条件。这里主要讨论常微分方程,比如下面的形式。

 

 

    这里f是已知函数,x是该方程的状态(比如可以表示位移,大小等等),是x的导数。一般这里讨论的x和都是向量。在一般初始值问题中,在一个起始时刻,给定一个,我们希望能知道在一段时间后x的状态。

    一般的微分方程可以很简单的来可视化。在一个2D平面中,这个方程描述了P点在平面上的运动曲线轨迹。在平面上任一点P,函数f可以计算出一个二维向量,所以函数f在平面上定义了一个向量场。如下图

向量场

在x的向量是一个速度向量,它把点P从一个位置移动到另一个位置,从向量场的任意一个位置放入一个点P,那么这个向量场就会把P点移动到另一个位置。一但放入了点P,P点的运动状态就由这个函数f来决定。而且P点的运动轨迹还取决于在什么地方放下的P点。

    一个关于x和t的函数,但是它的导数不一定直接依赖于时间。如果依赖于时间,那么P点和向量场都要移动,所以P点在x的速度不仅取决于从什么地方把它放入向量场,而且还取决于P点什么时候到达x点。在这种情况下,有两种方式取决于时间:第一,这个导数自己随时间的变化,第二,点P在不同时刻有不同的导数。

 

 

2.欧拉方法(Euler's Method)

 

    解微分方程最简单的数值方法叫做欧拉方法。给定一个x的初始值,用来近似一段时间h后的值,这里h是时间的步长。欧拉方法简单的在x的导数的方向上近似计算出的值。

    我们也可以用图形来可视化欧拉方法。欧拉方法近似代替了真正的积分曲线,P点的运动轨迹就是下图中的多边形,如下图。

欧拉方法

 

虽然欧拉方法很简单,但是不精确。从上图可以看到,时间不长越长,近似的曲线越不精确。而且欧拉方法还不稳定。比如函数,它的积分曲线应该让P点以指数的方式接近于某常数,对于足够小的步长,我们可以精确的近似出曲线,但当时,有,所以这个解相对于常数上下摆动。当h超过2/k,摆动很剧烈,如下图。

 

欧拉方法

3.中点方法(Midpoint Method)

    欧拉方法有很简单,但是他的缺点也是很明显的,还有一种叫做中点方法的数值微分方程的解法,它比欧拉方法更精确。由泰勒展开式

来计算的。因为

 

 所以有

 

 现在我们取

 

 带入前面的等式,可以得到

 

 移项整理后

 

*原创内容,转载请注明出处*

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张赐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值