Image Defence(一): Input

  1. A study of the effect of JPG compression on adversarial images (ISBA2016)
    这篇论文主要探讨了JPG压缩对classificatioin 的影响(FGS)。
    结论:对于小的扰动,JPG压缩提升较多;对于大的扰动,效果较少。

  2. Keeping the Bad Guys Out: Protecting and Vaccinating Deep Learning with JPEG Compression
    An important component of JPEG compression is its ability to remove high frequency signal components, inside square blocks of an image.
    JPG压缩之所以有效,是因为他对高频噪声有抑制作用。

  3. No Bot Expects the DeepCAPTCHA! Introducing Immutable Adversarial Examples with Applications to CAPTCHA ( 攻击的方法不是防御)
    两种常用的对抗样本的方法:一种是使用高维的非线性网络,一种是会在训练过程中加入对抗样本
    提出了immutable adversarial noise
    在这里插入图片描述
    迭代进行FGSM直到滤波器不能讲添加的噪声过滤掉
    论文中测试了很多滤波器,最终得到5x5的中值滤波对噪声的过滤作用最好

  4. MagNet: a Two-Pronged Defense against Adversarial Examples
    基于假设:存在一个分类器可以衡量对抗样本和干净样本的距离;存在一个重构器可以消除距离较小的对抗样本的噪声
    距离度量:
    (1)L0计算有多少像素值不同
    (2)L2计算的是两个图像之间的距离
    (3)L∞计算的是max difference for all pixels at corresponding position
    现存的对抗方法:
    (1) adversarial training: 在训练过程中加入对抗样本
    (2) defensive distillation: 对抗蒸馏。隐藏了softmax之前和softmax之间的梯度
    (3) detecting adversarial example: 分类前先判别一下加没加噪声
    在这里插入图片描述
    对于接着判别边界的对抗样本,通过reform进行修正;对于远离判别边界的样本直接拒绝
    Detector:全部同nature image来训练,计算出无攻击图片重构的一般距离,然后在测试时与该距离进行比较,距离的计算方式(Jensen-Shannon divergence:):
    在这里插入图片描述
    Reform: Autoencoder-based reformer
    在黑盒攻击时表现较好,但是白盒的时候较弱。提出的解决办法是提出多个auto-encoder,然后分类的时候随机选择。生成多个auto-encoder的方法是,对loss做手脚:在这里插入图片描述
    测试结果:在Carlini上出奇的好
    参考文章:https://zhuanlan.zhihu.com/p/30934360

  5. Pixel Defend: Leveraging Generate Models To Understand And Defend Againt Adversarial Exapmles(ICLR2018)
    基于假设:虽然对抗样本和干净图像相比差别很小,但是对抗样本lower probability densities。因此,他们糊弄判别器主要是由于协变量转换(covariate shift)。
    在这里插入图片描述
    净化图片:依次按行,列,通道,迭代寻找能使概率分布更加均匀的图片
    在这里插入图片描述

  6. Mitigating Adversarial Effects Through Randomization(ICLR18) Github
    (1) randomization layer(random resizing layer + random padding layer)
    (2) randomization layers + adversrial training
    在这里插入图片描述

  7. Deflecting Adversarial Attacks with Pixel Deflection
    观察到的现象:施加的噪声一般集中在物体部分,所以在对其进行defence的时候先生成一个robust activate map,重点关注物体区域.对与每个像素,借助其邻域像素计算进行更新.他之前还做了一个实验,对于nature image来说,如果改动的像素小于1%,那么对于结果的影响是十分微弱的
    在这里插入图片描述
    然后,他又做了一些方法来减少修改像素对于判别器的影响:像素域的变换;离散小波变换,并且还用了soft threshold BayesShrink.
    在这里插入图片描述

  8. Defence -GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models(ICLR2018) Github
    提出了Defence-GAN用来对输入图片进行纠正
    在这里插入图片描述在这里插入图片描述优点:可以被用在任何地方;如果生成器足够好,那么判别器就不需要被重新训练;可以抵御多种攻击,因为他训练的时候就只用nature image训练的,不用对抗样本;他是非线性的,所以由于GD loop的使用,白盒攻击很难生效
    实验证明判别器用nature or adversary image结果是差不多的~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值