论文阅读《Review of Artificial Intelligence Adversarial Attack and Defense Technologies》

论文地址

Introduction

对抗攻击防御的三种方式

modifying data

  1. Adversarial training(对抗训练)
  2. gradient hiding(梯度隐藏):这种方法容易被破解,因为代理黑盒模型的梯度是可以学到的,然后用黑盒去生成对抗样本
  3. blocking the transferability(阻止可转移性):将扰动输入标记为空标签,而不是将其分类为原始标签(个人觉得这是一个不错的idea)
  4. data compression(数据压缩)
    相关论文:《A study of the effect of JPG compression on adversarial images.》
  5. data randomization(数据随机)
    相关论文:《Adversarial Examples for Semantic Segmentation and Object Detection》

modifying model

修正神经网络可以被分为六种类型:

  1. regularization:这个我们非常熟悉,就是通过增加正则项去提高目标模型的泛化能力
  2. defensive distillation(防守蒸馏):该模型具有平滑的输出面,对干扰的敏感性较低,从而提高了模型的鲁棒性,对抗性攻击成功率可降低90%。
    相关论文:《Extending Defensive Distillation》
  3. feature squeezing:该方法旨在降低数据表示的复杂性,减少灵敏度低带来的对抗性干扰。虽然该方法可以有效地防止对抗攻击,但降低了对真实样本的分类精度
  4. deep contractive network:该方法利用降噪自动编码器来降低对抗噪声
  5. inserting a mask layer before processing the classified network:处理分类网络模型之前插入掩码层
  6. using Parseval 网络:该网络通过控制网络的全局Lipschitz常数,采用层次化正则化

Using an auxiliary tool

  1. Defense Generative Adversarial Nets(defense-GAN):
    该方法利用生成式对抗网络的强大功能;其主要思想是将输入图像“投影”到生成器G的范围内,通过减小重构误差∥∥G (z)−x2 2∥∥,然后再将图像x输入到分类器中。但是,GAN的训练是具有挑战性的,如果没有适当的训练,防御GAN的性能会明显下降。
  2. MagNet:
    该框架将分类器最后一层的输出读取为一个黑盒。MagNet使用检测器来识别合法和敌对样本。检测器测量给定的被测样品与流形之间的距离,如果距离超过阈值,则拒绝样品
  3. High-Level Representation Guided Denoiser(HGD):
    作者提出了三种不同的HGD训练方法。使用HGD的优点是,它可以在相对较小的数据集上训练,并且可以用于保护模型,而不是指导它的模型。

Adversarial Samples and Adversarial Attack Strategies(对抗性样本和对抗性攻击策略)

Adversarial Example(对抗样本)

在这里插入图片描述
在左图上加了微小扰动之后,本来以57.7%的置信度被分类为熊猫,结果以99.3%的置信度被分类为了长臂猿。
研究人员对对抗样本的存在提出了一些解释。一些认为,原因是模型的过度学习或under-regularization导致泛化能力不足,学习模型预测未知数据,而其他认为敌对的样本是由极端非线性的神经网络。然而,Goodfellow等在正则化模型和有足够维数的线性模型的输入中加入了扰动,证明了这两个模型防御对抗性攻击的有效性并没有显著提高。
Goodfellow et al.认为敌对样本产生的原因是高维空间中的线性行为。在高维线性分类器中,对每个输入特征进行归一化处理,对每个输入的一个维度进行轻微的扰动不会改变分类器的整体预测,而对输入的所有维度进行小的扰动就会导致有效的变化。
在这里插入图片描述
1 / ( 1 + e x p ( − x ) ) 1/(1+exp(-x)) 1/(1+exp(x))为sigmoid函数

Characteristics of Adversarial Examples

对抗样本具有三个基本特征,transferability(可转移性),regularization effect(正则化效应), adversarial instability(对抗不稳定性)

  1. transferability:在构造针对一个目标模型M1的攻击的对抗样本时,如果对手知道M2,则不需要获取模型M1的体系结构或参数,只要训练模型M2执行模型M1同样执行的任务即可。
  2. regularization effect:对抗性训练是一种正则化方法,可以揭示模型的缺陷,提高样本的鲁棒性。与其他正则化方法相比,构造对抗样本的成本较高。
  3. Advsarial instability:经过平移、旋转等物理变换后,对抗性样本很容易失去自己的对抗性。在这种情况下,对抗性样本将被目标模型正确分类。

Adversarial Capabilities and Goals

Adversarial Capabilities

术语“对抗能力”指的是对手可以获得和使用的关于目标模型的信息量。显然,能够接触到更多信息的对手严格来说比其他人“更强大”。对抗性能力的分类如图3所示。我们讨论了对抗能力的范围,因为它们与训练和测试阶段有关。
在这里插入图片描述

对抗能力的分类
  • 训练阶段
  1. Data Injection: 对手不能访问训练数据和学习算法,但能够向训练数据集添加新数据。对手可以通过向训练数据集中插入敌对样本来破坏目标模型
  2. Data Modification:对手不能访问学习算法,但可以访问完整的训练数据。对手可以在训练目标模型之前修改训练数据,从而破坏训练数据。
  3. Logic Corruption:对手可以干涉目标模型的学习算法。
  • 测试阶段
    在讨论这些攻击之前,我们假设存在一个目标模型f,它从数据分布μ中以输入对(X, y)为训练对象,其随机训练过程train具有随机性r(例如,随机权值初始化,dropout等)。训练后学习模型参数θ,
  1. White-box Attacks
    在白盒攻击中,对手对目标模型f有全部的知识,包括算法训练、数据分布μ和模型参数θ。对手利用现有信息识别目标模型f的最脆弱特征空间,然后通过使用对抗性样本生成方法来改变输入。利用模型的内部权值进行白盒攻击,说明模型具有较强的对抗能力。

  2. Black-box Attacks
    对手对黑盒攻击中的目标模型f一无所知。相反,他们通过使用关于过去输入/输出对的信息来分析模型的漏洞,例如,对手通过输入一系列对抗样本并观察相应的输出来攻击模型。黑盒攻击可以分为非适应黑盒攻击、自适应黑盒攻击和严格黑盒攻击。

    (1) Non-Adaptive Black-Box Attack(非自适应的黑盒攻击)
    对手只能访问目标模型f的训练数据分布μ。因此,对手为模型f选择训练程序train ',并从数据分布μ中训练一个局部模型来逼近目标模型。然后,对手在模型f '上使用白盒攻击策略生成对抗样本,并将这些样本应用到模型f中导致误分类。
    (2)Adaptive Black-Box Attack(自适应的黑盒攻击)
    对手不能访问关于目标模型的任何信息,但可以访问模型f作为一个oracle。在本例中,对手通过输入数据X来查询目标模型以获得输出标签y,然后对手选择训练过程retraining '和模型f '在查询目标模型得到的元组(X, y)上训练局部模型。最后,对手将白盒攻击产生的对抗性样本应用于目标模型
    (3)Strict Black-Box Attack(严格的黑盒攻击)
    对手无法获取数据分布θ,但可以从目标模型中收集输入-输出对(X, y)。它与自适应黑盒攻击的不同之处在于它不能通过改变输入来观察输出的变化。

与白盒攻击相比,黑盒攻击不需要学习目标模型的随机性r或参数θ。对手的目标是在非自适应攻击中使用数据分布μ训练局部模型f ,在自适应攻击中使用精心选择的数据集查询目标模型。

Adversarial Goals(攻击目标)

对抗目标可以从模型的不确定性钟推断出来。根据对抗性目标对模型输出完整性的影响,可以将其分为置信度降低,误分类,目标误分类和源/目标误分类。

Adversarial Attacks(对抗攻击)

Training Stage Adversarial Attacks(训练阶段的攻击)

Testing Stage Adversarial Attacks(测试阶段的攻击)

  1. 白盒攻击

    在白盒攻击中,对手知道目标模型的结构和参数,虽然在实践中很难实现,但一旦对手访问到目标模型,将对机器学习模型造成很大的威胁,因为对手可以通过分析目标模型的结构来构造对抗样本来进行攻击Papernot等人[14]引入了一个对抗性合成框架,该框架可分为两个步骤,即方向灵敏度估计和摄动选择。如图所示
    (1)方向灵敏度估计:对手通过在样本X周围的数据流中确定模型最敏感和最可能导致类更改的方向来评估每个输入特性的更改的敏感性。
    (2)摄动的选择:然后,对手利用敏感信息的知识来选择扰动δX,以获得最有效的对抗扰动。
    注意,这两步都在每次新的迭代开始时用δX + X替换X,直到扰动样本满足对抗目标。

从一个原始样本生成一个对抗样本所使用的总扰动需要尽可能小,这是保证对抗样本不被人眼识别的关键。假设‖·‖范数用于描述DNN输入域中的点之间的差异,模型f中的对抗样本可以形式化为以下优化问题的解决方案。
在这里插入图片描述
由于大多数DNN模型使式(3)具有非线性和非凸性,因此很难找到封闭解。现在,我们详细讨论上面两个步骤中使用的方法。

Direction Sensitivity Estimation(方向灵敏度估计)
  1. L-BFGS
    Szegedy等人[6]首先引入了对抗式样本(adversarial sample)一词,将最小化问题形式化,如公式(3)搜索对抗式样本。由于这个问题比较复杂,他们转而解决一个简化的问题,即寻找最小损失函数的加法,使神经网络可以做出错误的分类,从而将问题转化为一个凸优化过程。虽然该方法具有良好的性能,但计算对抗样本的成本较高。
  2. Fast Gradient Sign Method (FGSM)
    Goodfellow等人[15]提出了一种快速梯度符号方法,该方法计算代价函数相对于神经网络输入的梯度。对抗性样本的产生公式如下:
    在这里插入图片描述
    此处J为模型f的代价函数,∇x表示模型相对于标号为ytrue的正常样本x的梯度,e表示控制扰动振幅的超参数。虽然这是基于线性假设的近似解,但它也使目标模型在MNIST数据集上实现了89.4%的误分类。
  3. One-Step Target Class Method:
    这种方法是FGSM的一种变体,最大化某些特定目标类ytarget的概率P(ytarget|X),这对于给定的样本来说不太可能是一个真正的类。对于具有交叉熵损失的模型,在一步目标类法中可按式(5)制作对抗样本。
  4. Basic Iterative Method (BIM):这是FGSM的直接扩展,以小步长多次应用FGSM:
    在这里插入图片描述
    这里,α表示步长,ClipX,e {A}表示x的元素级剪切。该方法通常不依赖于模型的逼近,并在算法运行更多迭代时产生额外的有害对抗样本。
  5. Jacobian Based Saliency Map (JSMA):
    Papernot等人[17]提出了一种利用模型的雅可比矩阵求灵敏度方向的方法。该方法直接给出输出分量相对于每个输入分量的梯度,并将获得的知识用于复杂显著性映射方法来产生对抗样本。这种方法限制了10范数的扰动,这意味着只有几个像素的图像需要修改。这种方法对于源/目标误分类攻击特别有用。
  6. One Pixel Attack:
    Su等人提出了一种极端攻击方法,该方法只需改变图像中的一个像素值即可实现。他们使用差分进化算法对每个像素进行迭代修改,生成一个子图像,并与父图像进行比较,根据选择标准保留攻击效果最好的子图像,实现对抗性攻击。
  7. DeepFool:
    moosavi - dez愚i等人[19]提出对给定图像用迭代的方式计算最小范数对抗摄动,以找到最接近正常样本X的决策边界,并找到跨边界的最小对抗样本。他们解决了FGSM[15]下参数e的选择问题,并利用多重线性逼近对一般非线性决策函数进行了攻击。他们证明了它们产生的扰动比FGSM小,并且具有相似的欺骗率。
  8. HOUDINI
    Cisse等提出了一种名为HOUDINI的方法,它欺骗了基于梯度的机器学习算法。通过生成对抗性样本实现对抗性攻击,具体到任务损失函数,即利用网络可微损失函数的梯度信息来产生扰动。他们证明了HOUDINI不仅可以用来欺骗图像分类网络,还可以欺骗语音识别网络。
Perturbation Selection

对手可以使用目标模型对输入信息的敏感性来评估最可能引起最小干扰的目标错误分类的维度。干扰输入维数的方法有两类:
(1)Perturb all the input dimensions:
Goodfellow等提出了一种对每个输入维度进行干扰的方法,但FGSM方法计算梯度符号方向的干扰量较小。该方法有效地减小了原始样本与对应对抗样本之间的欧氏距离。
(2)Perturb the selected input dimension:
Papernot等人]选择了一个更复杂的涉及显著映射的过程,只选择了有限数量的输入维度进行扰动。该方法有效地减少了产生对抗样本时输入特征的扰动量。

第一种方法适合于快速生成大量的对抗样本,但由于其干扰较大,更容易被检测出来。第二种方法以较高的计算成本降低了扰动。

因为本人研究内容主要是白盒攻击,故文章中关于黑盒攻击的细节便不在展现。

Adversarial Attack Applications

由于对抗性攻击技术已经应用于学术界和工业界,本节描述了对抗性攻击在几个领域的应用,包括计算机视觉、自然语言处理、网络空间安全和物理世界。

Computer Vision

Semantic Image Segmentation and Object Detection

Wei等人[28]提出了一种基于生成对抗网络(GAN)框架的生成对抗图像和视频的方法[55]结合了高阶类损失和低阶特征损失来联合训练对抗样本生成器。为了增强对抗样本的可转移性,他们对从特征网络中提取的特征图进行了破坏。其框架的总体框架如图7所示。在PASCAL VOC和ImageNet VID数据集上的实验表明,该方法能够有效地生成具有良好可转移性的图像和视频对抗样本,能够同时攻击两种具有代表性的目标检测模型:提出了基于更快区域的卷积神经网络方法(Faster- rcnn),以及基于回归的模型,如单发多盒检测器(SSD)。

在这里插入图片描述

Natural Language Processing

讨论了对抗性攻击在自然语言处理领域的测试、分类和机器翻译中的应用。

Text Classification

Liang等人[30]提出了一种利用字符级CNN生成对抗性文本样本的算法[70]。他们展示了直接使用FGSM等算法产生对抗性文本样本的问题,即输出结果是乱码文本,人眼很容易识别为噪声样本。Shared TextFool代码库[71]可用于产生对抗性文本样本,主要思想是通过文本样本中的同义词和拼写错误修改现有单词。
Hossein等人[72]表明,用选定的单词策略性地插入标点符号可以欺骗分类器,并且当模型用作文件管理器时,有毒的注释可以被绕过。
Samanta等人[73]提出了一种通过修改原始样本来生成对抗性文本样本的新方法。该方法通过删除或替换文本中重要或突出的单词,并在文本样本中引入新词,对原始文本样本进行修改。作者在用于情感分析的IMDB电影评论数据集和用于性别检测的Twitter数据集上的实验结果表明了该方法的有效性。

Machine Translation

Belinkov等人[29]表明,字符级神经机器翻译(NMT)对随机字符操作过于敏感,他们使用黑箱启发式来生成字符级对抗示例。作者指出,即使部署了拼写检查器,最先进的模型也容易受到广告对抗性攻击。然而,Zhao等人[74]通过扰动潜在表示在编码句子空间中搜索和生成黑盒对抗样本。
Ebrahimi等人[75]提出使用梯度估计方法对对抗操作进行排序,使用贪婪搜索或波束搜索方法对对抗样本进行搜索。作者还提出了两种特定类型的攻击,以删除或更改翻译中的一个单词。

Cyberspace Security(网络空间安全)

Cloud Service

Papernot等人[21]对网络空间的深度神经网络分类器发起了攻击之一。他们训练了一个替代网络来替代合成数据上的目标黑盒分类器,并对Meta Mind、Amazon和谷歌远程托管神经网络进行攻击。结果表明,对于采用该方法生成的对抗样本,目标网络的分类错误率分别为84.24%、96.19%和88.94%,属于黑盒攻击。
Liu等[76]研究表明,虽然可转移的非靶向对抗示例很容易找到,但使用现有方法生成的靶向对抗示例几乎不会与目标标签一起转移。他们提出了一种基于集成的方法来生成可转移的对抗示例,该示例可以成功攻击黑箱图像分类系统Clarifai.com;结果如图8所示。

Malware Detection(恶意软件检测)

与图像识别相比,恶意软件分类字段引入了额外的约束,例如恶意设置,比如用离散输入域替换连续输入域,类似视觉条件。Hu等人[77]提出了一种名为MalGAN的模型来生成恶意软件对抗样本。如图9所示,该模型包含三个DNN模型,即发生器模型、鉴别器模型和替代模型。利用对抗样本的传递性,MalGAN构建了一个替代模型,可以模拟目标模型,生成由API调用序列组成的对抗恶意软件样本,绕过恶意软件检测系统。

Defense Strategy

Modifying Data

Adversarial Training

将对抗样本引入训练数据集,利用合法化的对抗样本训练模型,提高目标模型的鲁棒性。Szegedy等[6]首先注入对抗样本并修改其标签,使模型在面对对手时更加稳健。Goodfellow等人[15]降低了MNIST数据集上的误识别率,采用对抗性训练从89.4%提高到17.9%。Huang等[40]通过惩罚错误分类的对抗样本来提高模型的鲁棒性。Tramèr等人[41]提出了集成对抗训练,可以增加对抗样本的多样性。然而,在对抗训练中引入所有未知的攻击样本是不现实的,这导致了对抗训练的局限性。

Gradient Hiding

如果一个模型是不可微的(例如,一个决策树,一个最近邻居分类器,或一个随机森林),基于梯度的攻击是无效的。但是,通过学习带有梯度的代理黑箱模型,并使用该模型生成的对抗样本,该方法在这种情况下很容易被欺骗。

Blocking the Transferability

由于可转移性属性即使分类器具有不同的架构或在不联合数据集上训练也保持不变,防止黑盒攻击的关键是防止对抗性样本的可转移性。Hosseini等人[42]提出了一种三步NULL Labeling方法,以防止敌对样本从一个网络转移到另一个网络。其主要思想是在数据集上添加一个新的NULL标签,并通过训练分类器将其分类为NULL标签,以抵御对抗性攻击。该方法一般包括初始训练目标分类器、计算空概率和对抗训练三个主要步骤,如图15所示。

在这里插入图片描述

该方法的优点是将扰动输入标记为空标签,而不是将其分类为原始标签。该方法是目前最有效的防御方法之一,针对对抗性攻击,既能准确抵抗对抗性攻击,又不影响原始数据的分类精度。

Data Compression

Dziugaite等人发现,JPG压缩方法可以提高由于FGSM攻击造成的大量网络模型识别精度下降的干扰。Das等人[44]使用类似的JPEG压缩方法研究了一种针对FGSM和DeepFool攻击的防御方法。然而,这些图像压缩技术仍然不能有效防御更强大的攻击,例如Carlini & Wagner攻击[24]。同样,用于对抗普遍干扰攻击的显示压缩技术(Display Compression Technology, DCT)压缩方法也被证明是不足的。这些基于数据压缩的防御方法最大的局限性是,大量的压缩会导致原始图像分类精度下降,而少量的压缩往往不足以消除干扰的影响。

Data Randomization

Xie等人[45]证明了随机调整对抗样本的操作会降低对抗样本的有效性。同样,在对抗样本中加入一些随机纹理也可以减少它们对网络模型的欺骗。王et al。[46]使用一个数据转换模块分开的网络模型来消除图像中可能的敌对的扰动,并进行了数据膨胀操作在培训过程中,如添加一些高斯随机化处理,可以稍微提高网络模型的鲁棒性。

Modifying Model

我们可以对神经网络模型进行修改,如正则化、防御蒸馏、特征压缩、深度收缩网络和掩膜防御

Regularization

该方法通过在代价函数中加入规则项即惩罚项来提高目标模型的泛化能力,使模型在预测时具有良好的抗未知数据攻击的适应性。Biggio等[8]在训练SVM模型时使用正则化方法来限制数据的脆弱性。文献[47 - 49]采用正则化方法提高算法的鲁棒性,在抵抗对抗性攻击方面取得了较好的效果。

Defensive Distillation

Papernot等人[14]提出了一种基于蒸馏技术的防御蒸馏方法来抵御攻击[88]。原始精馏技术旨在将大尺度模型压缩为小尺度,保持原有精度,而防御精馏技术不改变模型的尺度,生成的模型输出面更平滑,对扰动的敏感性更低,以提高模型的鲁棒性。如图16所示,他们首先在数据X上用软最大温度T训练一个初始网络F,然后使用概率向量F(X),它包含了与类标签相比的关于类的额外知识,在相同的数据x上,在温度T下训练一个蒸馏网络Fd。作者证明使用防御性蒸馏可以降低90%的对抗攻击成功率。

在这里插入图片描述
然而,在黑盒攻击中不能保证防御蒸馏的有效性。

Feature Squeezing

特征压缩是一种模型增强技术[51],其主要思想是降低数据表示的复杂性,从而减少灵敏度低带来的对抗性干扰。启发式方法有两种,一种是在像素级上降低颜色深度,即对数值较少的颜色进行编码;另一种是对图像进行平滑滤波,即将多个输入映射到单个值,从而使模型在噪声和对抗性攻击下更加安全。虽然该技术可以有效地防止对抗攻击,但也降低了对真实样本的分类精度。

Deep Contractive Network

Gu等人[52]提出了一种深度压缩网络,该网络采用降噪自动编码器来降低对抗噪声。基于这一现象,DCN在训练过程中采用了类似于卷积自编码器(Convolutional Autoencoder, CAE)的平滑惩罚[89],并被证明对L-BGFS[6]等攻击具有一定的防御作用。

Mask Defense

Gao等[53]提出在处理分类网络模型之前插入一个掩码层。该掩码层对原始图像和对应的对抗样本进行训练,并对这些图像与前一网络模型层输出特征的差异进行编码。一般认为附加层中最重要的权重对应网络中最敏感的特征。因此,在最终的分类中,通过强制附加层的主权值为0来掩盖这些特征。这样可以避免敌对样本导致的分类结果偏差。

Parseval Networks

Cisse等人[20]提出了一种名为Parseval的网络作为对抗攻击的防御方法。该网络通过控制网络的全局Lipschitz常数,采用层次化正则化。考虑到网络可以被视为每一层的函数的组合,通过保持这些函数的一个小的Lipschitz常数,可以对小的输入扰动具有鲁棒的正离子,他们提出了控制网络权矩阵的谱范数,通过Parseval紧框架参数化网络权值矩阵的谱范数[90],因此称为“Parseval”网络。

Using Auxiliary Tool

这种方法是指使用额外的工具作为神经网络模型的辅助工具,包括defense-GAN、MagNet和高级表示引导的去噪。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 人工智能的工程应用包括但不限于以下几个方面: 1. 自动化生产:人工智能可以通过机器学习和深度学习等技术,实现对生产流程的自动化控制和优化,提高生产效率和质量。 2. 智能交通:人工智能可以通过图像识别、语音识别等技术,实现对交通流量的监控和管理,提高交通安全和效率。 3. 智能家居:人工智能可以通过语音识别、图像识别等技术,实现对家居设备的智能控制和管理,提高生活便利性和舒适度。 4. 机器人技术:人工智能可以通过机器学习和深度学习等技术,实现对机器人的智能控制和管理,提高机器人的自主性和灵活性。 5. 医疗健康:人工智能可以通过数据分析和机器学习等技术,实现对医疗数据的智能分析和管理,提高医疗服务的效率和质量。 ### 回答2: 人工智能在工程应用中有着广泛的应用。首先,人工智能可以用于工程设计和优化。工程师可以利用人工智能算法来生成和改进设计方案,从而提高工程系统的效能和性能。例如,在航空工程领域,人工智能技术可以用来设计更高效的飞机翼形,减少飞机的气动阻力,提高燃油利用率。此外,人工智能还可以用于工程系统的优化和控制,帮助工程师实现更好的系统性能和效果。 其次,人工智能可以应用于工程领域的智能监测和诊断。通过利用传感器数据和机器学习算法,人工智能可以分析和预测工程系统的状态,及时发现异常情况,并提出相应的解决方案。比如,在大型工业设备的维护和管理中,人工智能可以通过监测和分析设备的运行数据,预测设备故障的发生概率,提前进行维护和修理,以避免生产线的中断和损失。 此外,人工智能还可以用于工程领域的图像识别和模式识别。通过训练深度学习模型,工程师可以将人工智能运用于自动化的图像识别任务,例如识别和分类工程模式、缺陷检测和识别等。这在工程质量控制、产品检测和工艺分析等方面有着重要的应用前景。 总之,人工智能在工程应用中发挥着至关重要的作用,它可以用于工程设计和优化、智能监测和诊断、图像识别和模式识别等方面,帮助工程师提高系统性能、降低维护成本,并为工程领域的发展带来新的机遇和挑战。 ### 回答3: 人工智能的工程应用涉及到各个领域,包括制造业、交通运输、医疗保健、能源和环境等。在制造业中,人工智能可以用来优化生产线,提高生产效率和产品质量。通过分析和预测数据,人工智能可以提供实时的生产指导,并帮助企业制定更合理的生产计划。 在交通运输领域,人工智能可以用来改善交通流量和减少交通事故的发生。通过数据分析和模型优化,人工智能可以帮助交通管理部门优化信号灯配时,提供实时的交通状况信息,以及智能导航系统。人工智能还可以应用于自动驾驶技术,在未来,我们有望看到更智能、更安全的汽车。 在医疗保健领域,人工智能可以用于疾病诊断、药物研发和医疗管理等方面。通过分析大量的病例数据和医学文献,人工智能可以帮助医生提高诊断的准确性,并辅助医疗决策。此外,人工智能还可以加速药物研发的过程,发现新的治疗方法和药物。同时,人工智能还可以用于医疗管理,通过分析海量的医疗数据,提供个性化的医疗方案和健康管理建议。 在能源和环境领域,人工智能可以用于能源生产和管理的优化。通过分析天气、能源需求和供给等数据,人工智能可以提供更可靠和高效的能源系统。此外,人工智能还可以在环境监测和污染治理方面发挥作用,通过分析大量的环境数据,提供准确的预警和治理方案,帮助保护环境和减少污染。 总之,人工智能的工程应用涉及到各个领域,具有广泛的应用前景和巨大的潜力。通过结合人工智能和工程技术,我们有望实现更智能、更高效和更可持续的社会发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值