GAN相关引用/被引用的文章

原论文:Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN

 

引用论文:

2001 Data Mining Methods for Detection of New Malicious Executables

在本文中,我们提出了一个数据挖掘框架,可以准确自动地检测新的,以前未见过的恶意可执行文件。 数据挖掘框架会自动在我们的数据集中找到patterns,并使用这些patterns来检测一组新的恶意二进制文件。 与传统的基于签名的方法相比较,检测率提高了一倍。


2004 Learning to Detect Malicious Executables in the Wild

using n-grams of byte codes as features

评估朴素贝叶斯,决策树,支持向量机和boosting多个对恶意软件分类器的方法,boosted decision trees效果最好


2006 Learning to Detect and Classify Malicious Executables in the Wild∗

同上,增加了评估了这些方法如何根据其有效负载的功能对可执行文件进行分类


2013 Intriguing properties of neural networks神经网络的有趣特性


2013 Microsoft Portable Executable andCommon Object File FormatSpecification

Microsoft可移植可执行文件和通用目标文件格式规范


2014 ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

一种基于一阶梯度的随机目标函数优化算法


2014 Conditional Generative Adversarial Nets 条件生成对抗网络

展示了如何构建条件对抗网络。对于实证结果,我们展示了两组实验。一个用于MNIST数字数据集,以class标签为条件,另一个用于MIR Flickr 25,000数据集[10],用于多模态学习。


2014 Generative Adversarial Nets

生成模型G+判别模型D

使得D的出错率最大化


2015 TOWARDS DEEP NEURAL NETWORK ARCHITECTURES ROBUST TO ADVERSARIAL EXAMPLES

深度神经网络结构对于敌对样本的鲁棒性

 

研究敌对案例的结构,探索网络拓扑结构,预处理和训练策略,以提高DNN的健壮性。


2016 A General Retraining Framework for ScalableAdversarial Classification

一个再训练的框架,for 可伸缩敌对分类器

a) boost robustness of an arbitrary learning algorithm, in the face of b) a broader class of adversarial models than any prior methods.

提高学习算法的鲁棒性,面对更广泛的敌手模型

提高了对逃避攻击的鲁棒性,而不会显着影响总体准确性。


2016 Adversarial Perturbations Against Deep Neural Networksfor Malware Classification

深度神经网络恶意软件分类的敌对扰动

这篇文章是构建高效的敌对样本for神经网络恶意软件分类器


2016 DELVING INTO TRANSFERABLE ADVERSARIAL EXAMPLES AND BLACK-BOX ATTACKS

可转移的敌对例子,针对黑盒攻击

对大型模型和大型数据集进行了广泛的可转移性研究

证明使用ensemble-based的方法生成的敌对示例可以成功攻击Clarifai.com,一个黑匣子图像分类系统。


2016 Distillation as a Defense to AdversarialPerturbations against Deep Neural Networks

Distillation,对抗深层神经网络的一种扰动方法

分析研究了训练DNN时使用防御Distillation所赋予的普遍性和鲁棒性特性。我们还经验性地研究了我们的防御机制对两个置于对抗环境中的DNN的有效性。该研究表明,在研究的DNN上,Distillation可以将样品创造的有效性从95%降低至低于0.5%。这种显着的增益可以通过以下事实来解释:Distillation导致对抗样品生成中使用的梯度降低了1030倍。我们还发现在我们测试的DNN上,Distillation增加了特征的平均最小数量。


2016 EVALUATION OF DEFENSIVE METHODS FOR DNNS AGAINST MULTIPLE ADVERSARIAL EVASION MODELS

 

比较不同防御策略与各种对手模型

对抗性再学习框架也具有可转移性,可以在不需要事先知道其他模型的情况下捍卫敌对性的例子

比较了一般的敌对再学习框架与最先进的强大的深度神经网络,如Distillation,分类器(AEC)叠加的自动编码器和我们的改进版本IAEC,以评估它们的健壮性以及失误。 我们的实验结果表明,敌对再训练框架可以明显而一致地捍卫大多数对抗性例子,而不会增加原始模型的额外漏洞或性能损失。


2016 Improved Techniques for Training GANs

提出了适用于生成对抗网络(GAN)框架的各种新的架构特征和训练过程


2016 Practical Black-Box Attacks against Deep Learning Systemsusing Adversarial Examples

使用敌对案例对付深度学习系统的实用黑盒攻击,针对DNN,


2015 The Limitations of Deep Learning in Adversarial Settings

基于精确理解DNN的输入和输出之间的映射,引入一类新颖的算法来制作敌对样本

对抗成功率为97%,而每个样本平均只修改4.02%的输入特征

最后,我们通过定义良性输入与目标分类之间的距离的预测性度量来描述初步工作,概述针对对抗性样本的防御。


2016 Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples

机器学习中的可转移性:从现象到使用敌对样本的黑盒攻击

提高了替代模型的训练过程的效率,在机器学习模型之间引入了新的可转移性攻击。


2016 UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

无监督深度卷积学习生成敌对网络

CNG 深度卷积生成对抗网络,适用图像。


2017 TOWARDS PRINCIPLED METHODS FOR TRAINING GENERATIVE ADVERSARIAL NETWORKS

用于训练生成敌手网络的原理方法

理论分析,理解生成对抗网络的训练动态。

 

 

 

被引用文章:

 

2017 Adversarial Examples for Malware Detection恶意软件的敌手样本

机器学习模型缺点:缺乏对手派生输入的鲁棒性。

主要工作:对已有的“<

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值