EIS(防抖):meshflow算法 C++实现

本文探讨了视频防抖技术在消费和专业摄像、医疗诊断、军事监控以及机器人领域的应用,介绍了机械、光学和数字稳定方法,重点介绍了MeshFlow运动模型及其与传统方法的区别。作者提到在性能受限的环境下,如何结合陀螺仪提升实时效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

视频防抖的应用
对视频防抖的需求在许多领域都有。

这在消费者和专业摄像中是极其重要的。因此,存在许多不同的机械、光学和算法解决方案。即使在静态图像拍摄中,防抖技术也可以帮助拍摄长时间曝光的手持照片。

在内窥镜和结肠镜等医疗诊断应用中,需要对视频进行稳定,以确定问题的确切位置和宽度。

同样,在军事应用中,无人机在侦察飞行中捕获的视频也需要进行稳定,以便定位、导航、目标跟踪等。同样的道理也适用于机器人。

视频防抖的不同策略
视频防抖的方法包括机械稳定方法、光学稳定方法和数字稳定方法。下面将简要讨论这些问题:

机械视频稳定:机械图像稳定系统使用由特殊传感器如陀螺仪和加速度计检测到的运动来移动图像传感器以补偿摄像机的运动。
光学视频稳定:在这种方法中,不是移动整个摄像机,而是通过镜头的移动部分来实现稳定。这种方法使用了一个可移动的镜头组合,当光通过相机的镜头系统时,可以可变地调整光的路径长度。
数字视频稳定:这种方法不需要特殊的传感器来估计摄像机的运动。主要有三个步骤:1)运动估计2)运动平滑,3)图像合成。第一步导出了两个连续坐标系之间的变换参数。第二步过滤不需要的运动,在最后一步重建稳定的视频。

介绍网格光流MeshFlow运动模型。显示SteadyFlow和MeshFlow之间的对比。与SteadyFlow相比,其计算稠密光流并提取出所有像素位置的pixel profiles信息用于稳像,而我们提出的MeshFlow方法在计算性能上要更好。

github上很少又meshflow的代码,大部分也是py的代码,一小部分是c++的,但是很多也跑不通,,不行只能自己复现了。。。。

之前在C++上已经复现成功了,但是在比较低性能的开发板上无法达到实时,所以还得用陀螺仪,要去搞陀螺仪了。。。。。。从0开始。。。。从最开始的光流到meshflow再到陀螺仪,,,,哎路都块走完了。。

下面是meshflow的实测视频与结果:

左边的是原始图像(抖动的图像),右边是经过算法进行防抖之后的输出

output​​​

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrs.Gril

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值