最近听说个电子稳像的meshflow算法,论文讲的挺好,心动了,找到开源小试一下:
github:
https://github.com/sudheerachary/Mesh-Flow-Video-Stabilization
知乎:
【论文阅读】MeshFlow: Minimum Latency Online Video Stabilization 网格光流:最小时延在线视频稳像 - 知乎
github的python代码,可以直接跑(依赖库都是常见库)
跑了github上附带的demo视频,效果正常,就是开源的python代码跑的太慢了,看了下主要是提特征那儿以及透视变换,全都是基础矩阵运算,没有做加速。
其次换成自己的视频,效果不太行。简单调了开源几个参数,也没有改善。个人推测应该是哪儿的参数没有设置好,导致mesh网格中的特征点及网格的homography变换不鲁棒;或者对于实用场景mesh需要更稀疏,防止关键点匹配错误;或者是论文中表述需使用orb、fast特征,但python代码中直接用的goodfeaturestotrack函数。本人没有时间去深究问题所在了,但整体思路肯定是没有错的,即基于网格的思想做防抖效果的优化,去除单个homography的果冻效应。
如果有大神使用meshflow的达到了比较好的效果,欢迎指教。
meshflow:
stable
之前博客:EIS(电子稳像,视频防抖)算法开发记录_视频防抖算法-CSDN博客的效果(知乎中提到的单个单应性变换(single homography-based )的2D稳像方法):
Video_2022-08-27_083154
话说一直想把gyroflow摸一下,但一直没有时间。想要深入研究效果的小伙伴可以直接去深入剖析开源的 gyroflow吧,这个才是防抖的天花板,且各大厂已经有一些应用了(如大疆)。