TensorFlow学习(4)——Pandas的基本用法

Pandas 简介

Pandas是对数据进行处理的工具,通过该工具可以对数据进行快速的建模,机器学习中需要大量的对数据进行处理,因此在真正学习TensorFlow之前,我们先来了解一下Pandas。具体使用方法如下:

下载安装

安装方法很容易,只要 cd 到Python的安装目录下的Scripts,我这里安装在E盘下,所以cd E:\Python\Python35\Scripts

然后执行pip install pandas就可以下载安装Pandas了,如下图:
在这里插入图片描述

基本使用
引入Pandas并输出版本号
from __future__ import print_function

import pandas as pd
pd.__version__
结构

pandas 中的主要数据结构被实现为以下两类:

  • DataFrame,您可以将它想象成一个关系型数据表格,其中包含多个行和已命名的列
  • Series,它是单一列。DataFrame 中包含一个或多个 Series,每个 Series 均有一个名称
创建Series
pd.Series(['San Francisco', 'San Jose', 'Sacramento'])
创建DataFrame
city_names = pd.Series(['San Francisco', 'San Jose', 'Sacramento'])
population = pd.Series([852469, 1015785, 485199])
#创建DataFrame
pd.DataFrame({ 'City name': city_names, 'Population': population })

通常情况下数据量会很多,所以我们不会手动创建DataFrame,这时候我们会导入数据文件,下面的代码是导入一个住房数据文件:

california_housing_dataframe = pd.read_csv("https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv", sep=",")
#显示DataFrame 有趣的统计信息
california_housing_dataframe.describe()

上面的代码执行结果是(需要翻墙):
在这里插入图片描述

除此之外您还可以输入一下代码来显示DataFrame的前几条数据:

california_housing_dataframe.head()

绘制图标:

california_housing_dataframe.hist('housing_median_age')

在绘图之前你需要安装matplotlib,步骤如图:
在这里插入图片描述

但一般情况下命令行是无法绘制出图标的,你会看到命令行执行的结果如下:
在这里插入图片描述

访问数据

输出所有的城市名:

cities = pd.DataFrame({ 'City name': city_names, 'Population': population })
print(type(cities['City name']))
cities['City name']

输出第一个:

print(type(cities['City name'][1]))
cities['City name'][1]

输出第一个到第三个:

print(type(cities[0:2]))
cities[0:2]
操控数据

对整列进行运算,例如可以将所有的population都除以1000:

population / 1000

向现有 DataFrame 添加 Series:

#增加列
cities['Area square miles'] = pd.Series([46.87, 176.53, 97.92])
#修改列的值
cities['Population density'] = cities['Population'] / cities['Area square miles']

本节到此结束/

欢迎大家加入Q群讨论:463255841

本节到此结束/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值