关于数据增强
深度学习中常用的一种技术,通过对原始数据进行一系列的变换和扩充,生成新的训练样本,从而增加数据的多样性和数量,提升模型的鲁棒性和泛化能力。
以下是一些常见的数据增强方法:随机裁剪(Random Crop):随机选取原始图像的一部分作训练样本,可以使模型对目标在不同位置的出现具有鲁棒性。
随机翻转(Random Flip):随机水平或垂直翻转图像,增加数据的多样性。
随机旋转(Random Rotation):随机旋转图像一定角度,模拟真实世界中物体的姿态变化,提高模型对于旋转变换的鲁棒性。随机缩放(RandomScale):随机缩放图像的尺寸,增加数据的多样性。色彩扰动(Color Distortion):对图像的亮度、对比度、色调等进行随机扰动,增加数据的多样性。
添加噪声(Add Noise):向图像中添加随机噪声,模拟真实世界中的噪声情况,提高模型的鲁棒性。
剪切 (Cutout):随机将图像的一部分区域设置为零,强制模型关注其他部分的特征。
图像平移 (Image Translation):将图像在水平或垂直方向上进行平移,增加数据的多样性。行数据增强时要确保变换后的样本仍然保持与原始样本相同的标签信息,以保证数据增强的有效性。