非负矩阵分解(Non-negative Matrix Factorization,简称NMF)是一种常用的无监督学习算法

本文详细介绍了非负矩阵分解(NMF)的原理,包括数据预处理、模型构建、目标函数优化、乘法更新规则以及其在特征提取和降维中的应用。同时探讨了NMF的优点和局限性。
摘要由CSDN通过智能技术生成

点击链接加入群聊【技术交流群1】:

非负矩阵分解(Non-negative Matrix Factorization,简称NMF)是一种常用的无监督学习算法,用于对非负数据进行特征提取和降维。与主成分分析(PCA)等传统的线性降维方法不同,NMF假设原始数据和分解结果中的元素都是非负的。

下面详细介绍非负矩阵分解的主要步骤:

数据预处理
首先,对原始数据进行预处理,以确保数据满足NMF的基本假设。NMF要求原始数据和分解结果中的元素都是非负的。因此,如果数据中存在负值,则可以采取一些方法来进行预处理,如取绝对值、加上一个偏移量等。

构建NMF模型
假设我们有一个非负数据矩阵V,我们希望将其分解为两个非负矩阵W和H的乘积,即V ≈ WH。其中,W是一个非负的特征矩阵,每一列代表一个特征;H是一个非负的系数矩阵,每一行代表一个样本。

确定目标函数
NMF的目标是找到使得近似误差最小化的W和H。常见的目标函数包括欧氏距离、KL散度、重建误差等。欧氏距离和KL散度是常用的目标函数,它们分别在不同应用场景下具有不同的特点。

优化目标函数
为了最小化目标函数,可以使用迭代优化算法,如乘法更新规则、梯度下降等。乘法更新规则是NMF中常用的一种方法,它通过迭代更新W和H的元素来逐步优化目标函数。具体来说,乘法更新规则中,W和H的更新公式如下:

W = W * (V * H') ./ (W * (H * H') + epsilon)
H = H * (W' * V) ./ ((W' * W) * H + epsilon)

其中,'表示矩阵的转置,./表示按元素进行除法,epsilon是一个小的正数,用于避免除零错误。

控制迭代停止条件
在进行迭代优化时,需要设置适当的迭代次数或停止条件,以控制算法的收敛性和计算效率。常见的停止条件包括达到最大迭代次数、连续多次迭代后目标函数的变化小于设定阈值等。

可视化或应用
在得到优化后的W和H之后,可以利用它们进行特征提取、数据降维等任务。可以通过可视化特征矩阵W的列向量来理解每个特征的含义,或者根据系数矩阵H的行向量来对样本进行表示。

NMF的优点包括:

可以提取非负数据的隐含结构和特征;
相比于传统的线性降维方法,NMF更适用于处理非负数据,如文本、图像、音频等;
NMF在某些场景下可以作为一种数据预处理方法,用于去除噪声或冗余信息。
然而,NMF也存在一些限制和缺点:

NMF算法的结果不唯一,不同的初始化条件可能得到不同的分解结果;
NMF假设原始数据和分解结果中的元素都是非负的,这在某些场景下可能不成立;
NMF对初始值敏感,不同的初始化方法可能导致不同的结果。

  • 8
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值