为什么信号的时宽带宽积是常数?

  在信号处理系统中,我们都应该知道信号的时宽带宽积是一个常数,但为什么是常数呢?好像很多同学并没有去深究,今天我们就来看一下这个问题。

  如果分别用 w ( n ) w(n) w(n) W ( w ) W(w) W(w)表示信号的时域和频域,那么可以用 Δ ( w ) \Delta(w) Δ(w) Δ ( W ) \Delta(W) Δ(W)来分别衡量它们的宽度,我们分别称它们为有效时域半径和有效频域半径。数值 2 Δ ( w ) 2\Delta(w) 2Δ(w) 2 Δ ( W ) 2\Delta(W) 2Δ(W)称为有效时刻和有效频宽,并用 E ( w ) E(w) E(w) E ( W ) E(W) E(W)表示它们的中心。这里中心和半径分别表示为:

E ( w ) = ∑ n = − ∞ + ∞ n ∣ w ( n ) ∣ 2 ∥ w ∥ 2 2 E(w)=\frac{\sum_{n=-\infty}^{+\infty} n|w(n)|^{2}}{\|w\|_{2}^{2}} E(w)=w22n=+nw(n)2

Δ ( w ) = ∑ n = − ∞ + ∞ ( n − E ( w ) ) 2 ∣ w ( n ) ∣ 2 ∥ w ∥ 2 2 \Delta(w)=\sqrt{\frac{\sum_{n=-\infty}^{+\infty}(n-E(w))^{2}|w(n)|^{2}}{\|w\|_{2}^{2}}} Δ(w)=w22n=+(nE(w))2w(n)2

E ( W ) = ∑ ω = − ∞ + ∞ ω ∣ W ( e j ω ) ∣ 2 ∥ W ∥ 2 2 E(W)=\frac{\sum_{\omega=-\infty}^{+\infty} \omega\left|W\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|^{2}}{\|W\|_{2}^{2}} E(W)=W22ω=+ωW(ejω)2

Δ ( W ) = ∑ ω = − ∞ ∞ ( ω − E ( W ) ) 2 ∣ W ( e j ω ) ∣ 2 ∥ W ∥ 2 2 \Delta(W)=\sqrt{\frac{\sum_{\omega=-\infty}^{\infty}(\omega-E(W))^{2}\left|W\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|^{2}}{\|W\|_{2}^{2}}} Δ(W)=W22ω=(ωE(W))2W(ejω)2


扫盲:|| ||右下角的2表示2次范数

  我们所说的时宽带宽积是常数其实被称为“不确定原理”:
w ( n ) w(n) w(n)及其傅里叶变换 W ( w ) W(w) W(w)满足窗口函数的条件,则

Δ ( w ) Δ ( W ) ⩾ 1 2 \Delta(w) \Delta(W) \geqslant \frac{1}{2} Δ(w)Δ(W)21

等号成立的充分必要条件是 w ( n ) w(n) w(n)为高斯函数,即 w ( n ) = A e − a n 2 w(n)=A e^{-a n^{2}} w(n)=Aean2

证明过程如下:

  如果将 w ( n ) w(n) w(n)的导函数的傅里叶变换记为 W ′ ( ω ) W^{\prime}(\omega) W(ω),那么由傅里叶变换的性质可以得到:

W ′ ( ω ) = ( j ω ) W ( ω ) W^{\prime}(\omega)=(j \omega) W(\omega) W(ω)=(jω)W(ω)

再由柯西-施瓦茨不等式得:

( Δ ( w ) Δ ( W ) ) 2 = 1 ∥ w ∥ 2 2 ∑ n = − ∞ + ∞ n 2 ∣ w ( n ) ∣ 2 ⋅ 1 ∥ W ∥ 2 2 ∑ ω = − ∞ + ∞ ω 2 ∣ W ( ω ) ∣ 2 = ∑ n = − ∞ + ∞ n 2 ∣ w ( n ) ∣ 2 ⋅ ∑ ω = − ∞ + ∞ ∣ W ′ ( ω ) ∣ 2 ∥ w ∥ 2 2 ⋅ ∥ W ∥ 2 2 ⩾ 1 ∥ w ∥ 2 4 ∣ ∑ n = − ∞ ∞ n w ( n ) w ′ ( n ) ∣ 2 = 1 ∥ w ∥ 2 4 ( 1 2 ∑ n = − ∞ + ∞ ∣ w ( n ) ∣ 2 ) 2 = 1 4 \begin{array}{l} \begin{aligned} (\Delta(w) \Delta(W))^{2} &=\frac{1}{\|w\|_{2}^{2}} \sum_{n=-\infty}^{+\infty} n^{2}|w(n)|^{2} \cdot \frac{1}{\|W\|_{2}^{2}} \sum_{\omega=-\infty}^{+\infty} \omega^{2}|W(\omega)|^{2} \\ &=\frac{\sum_{n=-\infty}^{+\infty} n^{2}|w(n)|^{2} \cdot \sum_{\omega=-\infty}^{+\infty}\left|W^{\prime}(\omega)\right|^{2}}{\|w\|_{2}^{2} \cdot\|W\|_{2}^{2}} \\ & \geqslant \frac{1}{\|w\|_{2}^{4}\left|\sum_{n=-\infty}^{\infty} n w(n) w^{\prime}(n)\right|^{2}} \\ &=\frac{1}{\|w\|_{2}^{4}}\left(\frac{1}{2} \sum_{n=-\infty}^{+\infty}|w(n)|^{2}\right)^{2}=\frac{1}{4} \end{aligned} \end{array} (Δ(w)Δ(W))2=w221n=+n2w(n)2W221ω=+ω2W(ω)2=w22W22n=+n2w(n)2ω=+W(ω)2w24n=nw(n)w(n)21=w241(21n=+w(n)2)2=41

所以,
Δ ( w ) Δ ( W ) ⩾ 1 2 \Delta(w) \Delta(W) \geqslant \frac{1}{2} Δ(w)Δ(W)21

等式成立的条件就是柯西-施瓦茨不等式成为等式的条件。

因此我们可以知道,对于给定的信号,其时宽与带宽的乘积为一常数。

微信公众号:Quant_Times

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值