5904. 【NOIP2018模拟10.15】刺客信条
Description
故事发生在1486 年的意大利,Ezio 原本只是一个文艺复兴时期的贵族,后来因为家族成员受到圣殿骑士的杀害,决心成为一名刺客。最终,凭借着他的努力和出众的天赋,成为了杰出的刺客大师。刺客组织在他的带领下,为被剥削的平民声张正义,赶跑了原本统治意大利的圣殿骑士首领-教皇亚历山大六世。在他的一生中,经历了无数次惊心动魄、扣人心弦的探险和刺杀。
这次的故事就是他暗杀一位作恶多端的红衣主教。红衣主教可以吸取他周围人的生命力量,而他的红衣教徒也拥有这个力量。红衣主教的家是一个x*y 的长方形房间,也就是说,他的家的四个角坐标分别为(0,0)(x,0)(0,y)(x,y)。教堂的门在(0,0) ,而红衣主教就在 (x,y)的卧室休息。他的家中还有n个守护着他的红衣教徒,站在(ai,bi)。Ezio想要趁主教休息时,从门进入潜入到他的卧室刺杀他,因为主教休息时会脱下红衣,这样吸取生命的力量就消失了。可是守卫他的红衣教徒依然很危险,离红衣教徒太近就会被吸取生命。因此,Ezio想知道,在能刺杀主教的前提,从门到他的卧室的路上,他最远和离他最近的红衣教徒保持多远的距离。注意:教徒都在房间里。
Input
第一行三个整数x,y,n。之后n行,每行两个整数ai,bi ,意义见题目描述。
Output
一行一个数D,表示Ezio能保持的最大距离,保留两位小数。
Sample Input
10 20 2
3 3
6 14
Sample Output
3.00
样例说明
贴着墙走
Data Constraint
数据范围
对 10%的数据n<=10,
对 30%的数据n<=100
对 100%的数据n<=2000
保证输入合法,x,y属于[1,10^6].
分析:我们发现,如果在任意两个圆心之间连边,会有一个“门”,这个门只在其长度 2r时是打开的,其他情况是封闭的。我们发现问题就变为每个门有一个关闭的时间点,求什么时候起点与终点联通,这与原问题是等价的。类似于对偶图,我们把房间墙壁在起点与终点处断开,当两部分墙壁联通时,显然起点与终点就断开了,反之亦然。所以二分一个圆的半径,用并查集维护连通性即可。
代码
#include <cstdio>
#include <cmath>
#define N 3000
#define eps 1e-5
using namespace std;
struct arr
{
double x, y, z;
}a[N*N],c[N];
int n,tot;
double p, q;
int f[N];
double dist(arr i, arr j)
{
double s = sqrt(((double)(i.x - j.x) * (double)(i.x - j.x)) + ((double)(i.y - j.y) * (double)(i.y - j.y)));
return s;
}
int find(int x)
{
if (f[x] == x) return x;
return f[x] = find(f[x]);
}
bool ur()
{
if (find(n + 1) == find(n + 3)) return true;
if (find(n + 1) == find(n + 4)) return true;
if (find(n + 2) == find(n + 3)) return true;
if (find(n + 2) == find(n + 4)) return true;
return false;
}
bool check(double x)
{
for (int i = 0; i <= n + 4; i++) f[i] = i;
for (int i = 1; i <= tot; i++)
if ((a[i].z <= x) || (a[i].x <= n && a[i].y <= n && a[i].z <= x * 2))
{
int u = find(a[i].x);
int v = find(a[i].y);
if (u != v)
{
f[v] = u;
if (ur()) return false;
}
}
return true;
}
int main()
{
freopen("AC.in","r",stdin);
freopen("AC.out","w",stdout);
scanf("%lf%lf%d", &p, &q, &n);
for (int i = 1; i <= n; i++)
scanf("%lf%lf", &c[i].x, &c[i].y);
tot = 0;
for (int i = 1; i <= n; i++)
for (int j = i + 1; j <= n; j++)
{
a[++tot].x = i;
a[tot].y = j;
a[tot].z = dist(c[i], c[j]);
}
for (int i = 1; i <= n; i++)
{
a[++tot].x = i; a[tot].y = n + 1; a[tot].z = c[i].x;
a[++tot].x = i; a[tot].y = n + 2; a[tot].z = (q - c[i].y);
a[++tot].x = i; a[tot].y = n + 3; a[tot].z = (p - c[i].x);
a[++tot].x = i; a[tot].y = n + 4; a[tot].z = c[i].y;
}
double l, r, ans;
l = 0;
r = sqrt(p * p + q * q);
while (r - l > eps)
{
double mid = (l + r) / 2.0;
if (check(mid)) ans = l = mid;
else r = mid;
}
printf("%.2lf", ans);
}