jzoj5904. 【NOIP2018模拟10.15】刺客信条(并查集)

5904. 【NOIP2018模拟10.15】刺客信条

Description
故事发生在1486 年的意大利,Ezio 原本只是一个文艺复兴时期的贵族,后来因为家族成员受到圣殿骑士的杀害,决心成为一名刺客。最终,凭借着他的努力和出众的天赋,成为了杰出的刺客大师。刺客组织在他的带领下,为被剥削的平民声张正义,赶跑了原本统治意大利的圣殿骑士首领-教皇亚历山大六世。在他的一生中,经历了无数次惊心动魄、扣人心弦的探险和刺杀。
这次的故事就是他暗杀一位作恶多端的红衣主教。红衣主教可以吸取他周围人的生命力量,而他的红衣教徒也拥有这个力量。红衣主教的家是一个x*y 的长方形房间,也就是说,他的家的四个角坐标分别为(0,0)(x,0)(0,y)(x,y)。教堂的门在(0,0) ,而红衣主教就在 (x,y)的卧室休息。他的家中还有n个守护着他的红衣教徒,站在(ai,bi)。Ezio想要趁主教休息时,从门进入潜入到他的卧室刺杀他,因为主教休息时会脱下红衣,这样吸取生命的力量就消失了。可是守卫他的红衣教徒依然很危险,离红衣教徒太近就会被吸取生命。因此,Ezio想知道,在能刺杀主教的前提,从门到他的卧室的路上,他最远和离他最近的红衣教徒保持多远的距离。注意:教徒都在房间里。

Input
第一行三个整数x,y,n。之后n行,每行两个整数ai,bi ,意义见题目描述。

Output
一行一个数D,表示Ezio能保持的最大距离,保留两位小数。

Sample Input
10 20 2
3 3
6 14

Sample Output
3.00

样例说明
贴着墙走

Data Constraint
数据范围
对 10%的数据n<=10,
对 30%的数据n<=100
对 100%的数据n<=2000
保证输入合法,x,y属于[1,10^6].

分析:我们发现,如果在任意两个圆心之间连边,会有一个“门”,这个门只在其长度 2r时是打开的,其他情况是封闭的。我们发现问题就变为每个门有一个关闭的时间点,求什么时候起点与终点联通,这与原问题是等价的。类似于对偶图,我们把房间墙壁在起点与终点处断开,当两部分墙壁联通时,显然起点与终点就断开了,反之亦然。所以二分一个圆的半径,用并查集维护连通性即可。

代码

#include <cstdio>
#include <cmath>
#define N 3000
#define eps 1e-5
using namespace std;

struct arr
{
	double x, y, z;
}a[N*N],c[N];
int n,tot;
double p, q;
int f[N];

double dist(arr i, arr j)
{
	double s = sqrt(((double)(i.x - j.x) * (double)(i.x - j.x)) + ((double)(i.y - j.y) * (double)(i.y - j.y)));
	return s;
}

int find(int x)
{
	if (f[x] == x) return x;
	return f[x] = find(f[x]);
}

bool ur()
{
	if (find(n + 1) == find(n + 3)) return true;
	if (find(n + 1) == find(n + 4)) return true;
	if (find(n + 2) == find(n + 3)) return true;
	if (find(n + 2) == find(n + 4)) return true;
	return false; 
}

bool check(double x)
{
	for (int i = 0; i <= n + 4; i++) f[i] = i;
	for (int i = 1; i <= tot; i++)
		if ((a[i].z <= x) || (a[i].x <= n && a[i].y <= n && a[i].z <= x * 2))
		{
			int u = find(a[i].x);
			int v = find(a[i].y);
			if (u != v)
			{
				f[v] = u;
				if (ur()) return false;
			}
		} 
	return true;
}

int main()
{
	freopen("AC.in","r",stdin);
	freopen("AC.out","w",stdout);
	scanf("%lf%lf%d", &p, &q, &n);
	for (int i = 1; i <= n; i++)
		scanf("%lf%lf", &c[i].x, &c[i].y);
	tot = 0;
	for (int i = 1; i <= n; i++)
		for (int j = i + 1; j <= n; j++) 
			{
				a[++tot].x = i;
				a[tot].y = j;
				a[tot].z = dist(c[i], c[j]);
			}
	for (int i = 1; i <= n; i++)
	{
		a[++tot].x = i; a[tot].y = n + 1; a[tot].z = c[i].x;
		a[++tot].x = i; a[tot].y = n + 2; a[tot].z = (q - c[i].y);
		a[++tot].x = i; a[tot].y = n + 3; a[tot].z = (p - c[i].x);
		a[++tot].x = i; a[tot].y = n + 4; a[tot].z = c[i].y;
	}
	double l, r, ans;
	l = 0;
	r = sqrt(p * p + q * q);
	while (r - l > eps)
	{
		double mid = (l + r) / 2.0;
		if (check(mid)) ans = l = mid;
			else r = mid;
	}
	printf("%.2lf", ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值