P1966 火柴排队
题目描述
涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度。 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2
其中 ai 表示第一列火柴中第 i 个火柴的高度,bi 表示第二列火柴中第 i 个火柴的高度。
每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最小。请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对 99,999,997 取模的结果。
输入输出格式
输入格式:
共三行,第一行包含一个整数 n,表示每盒中火柴的数目。
第二行有 n 个整数,每两个整数之间用一个空格隔开,表示第一列火柴的高度。
第三行有 n 个整数,每两个整数之间用一个空格隔开,表示第二列火柴的高度。
输出格式
输出共一行,包含一个整数,表示最少交换次数对 99,999,997 取模的结果。
输入输出样例
输入样例#1:
【输入输出样例 1】
4
2 3 1 4
3 2 1 4
【输入输出样例 2】
4
1 3 4 2
1 7 2 4
输出样例#1:
【输入输出样例 1】
1
【输入输出样例 2】
2
说明
【输入输出样例说明1】
最小距离是 0,最少需要交换 1 次,比如:交换第 1 列的前 2 根火柴或者交换第 2 列的前 2 根火柴。
【输入输出样例说明2】
最小距离是 10,最少需要交换 2 次,比如:交换第 1 列的中间 2 根火柴的位置,再交换第 2 列中后 2 根火柴的位置。
【数据范围】
对于 10%的数据, 1 ≤ n ≤ 10;
对于 30%的数据,1 ≤ n ≤ 100;
对于 60%的数据,1 ≤ n ≤ 1,000;
对于 100%的数据,1 ≤ n ≤ 100,000,0 ≤火柴高度≤ maxlongint
分析: 众所周知∑(ai-bi)2=∑ai2+∑bi^2-2∑aibi,由于前两项是个定值,所以转化为求∑aibi的最大值,根据排序不等式,当ai的排序与bi的排序一致时取得最大值,然后又因为只能交换相邻两项,所以求以ai为关键字的逆序对即可。
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#define N 1000005
#define mo 99999997
using namespace std;
struct arr
{
int x, num;
}a[N],b[N],q[N];
int c[N];
int n;
int cmp(arr p, arr q){return p.x<q.x;}
int so(arr p, arr q){return p.x>q.x;}
int read()
{
char ch = getchar();
int x = 0, f = 1;
while (ch < '0' || ch > '9')
{
if (ch == '-') f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
return x * f;
}
int count(int x)
{
int s = 0;
while (x > 0)
{
s += c[x];
x -= x & (-x);
}
return s;
}
void ins(int x)
{
while (x <= n)
{
c[x]++;
x += x & (-x);
}
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++) a[i].x = read(), a[i].num = i;
for (int i = 1; i <= n; i++) b[i].x = read(), b[i].num = i;
sort(a + 1, a + n + 1, cmp);
sort(b + 1, b + n + 1, cmp);
for (int i = 1; i <= n; i++) q[a[i].num].x = b[i].num, q[i].num = i;
long long ans = 0;
for (int i = n; i >= 1; i--)
{
ans = (ans + (long long)count(q[i].x)) % mo;
ins(q[i].x);
}
printf("%lld", ans);
}