思路: 模拟
长度为偶数时,由前半段长度的 最小值+qu[i]-1构成前半段,然后跟反转后的合并。
长度为奇数时,前半段长度的最小值+qu[i]-1构成前半段 (包含中间的那位数字) ,然后跟反转(去掉最后一位)后的合并。
细节:
前半部分的次方:(len + 1)/ 2 - 1 最大值即向上取整:(len + 1)/ 2
长度为1时:前半段为1->9(0次方) 最大值:10(1次方)
长度为2时:1->9(0) 最大值:10(1)
长度为3时: 10->99(1) 最大值:100(2)
长度为4时:10->99(1) 最大值:100(2)
class Solution {
public:
using ll = long long;
vector<long long> kthPalindrome(vector<int>& queries, int intLength) {
vector<long long> ans;
ll _min = pow(10, (intLength + 1) / 2 - 1), _max = pow(10, (intLength + 1) / 2);
for (auto & a : queries) {
int frt = _min + a - 1;
if (frt >= _max) {
ans.push_back(-1);
continue;
}
if (intLength & 1) {
string tmp = to_string(frt);
tmp.pop_back(); //去掉最后一位
reverse(tmp.begin(), tmp.end());
long long tmp2 = stoll(to_string(frt) + tmp);
ans.push_back(tmp2);
}else {
string tmp = to_string(frt);
reverse(tmp.begin(), tmp.end());
long long tmp2 = stoll(to_string(frt) + tmp);
ans.push_back(tmp2);
}
}
return ans;
}
};
代码细节
1.反转数字:先to_string()然后reverse()。
2.sting转long long :stoll()函数