深度剖析:DeepSeek 671B 满血版部署实战与性能优化全攻略

本文目录

  1. DeepSeek模型推理性能的理论分析
  2. DeepSeek模型推理性能的优化手段
  3. 企业级部署与实践:成本与性能的权衡
  4. 生产应用中的后续优化思路
  5. 结语
  6. 展望

一、DeepSeek模型推理性能的理论分析

对于当下的大模型,其GPU运行过程可简化为以下几步:

  1. 对输入文本进行转换,将汉字或者单词转换成大模型能理解的数字(向量和位置编码)。
  2. 基于模型的参数进行计算,此时需将模型的参数(以Qwen2.5 - 72B为例,即145GB数据)加载到计算单元进行计算。
  3. 生成回答,本质是生成候选词和概率分布。

在这里插入图片描述
在此过程中,对于GPU硬件有两个关键参数:
5. 矩阵乘法的性能:即我们常说的GPU的TFlops。
6. GPU显存带宽:因为要从显存读取模型参数,这与显存采用GDDR还是HBM有关。

对于现代GPU而言,后者的“瓶颈效应”往往大于前者。我们列出一些常见GPU的算力和显存带宽:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值