图模型初学笔记(Markov Network)

这篇博客介绍了Markov网络的基础知识,包括随机变量的点和边的含义,Gibbs分布,以及图模型的参数化表示。重点讨论了Sum-Product Variable Elimination Algorithm,解释了如何通过Cluster Graph和Clique Tree进行变量消除,并概述了消息传递的过程。
摘要由CSDN通过智能技术生成

(不保证正确性,只是笔记)

1. Markov Network 的点、边的意义

             点: 随机变量

             边: 相邻点的直接概率作用,可能没有很直观的现实意义


2. (1)图的概率表示

              Gibbs 分布

              两者形式相同—> (2)

     (2)Markov network 的参数化表示

                     factor =  clique potential    (完全子图


3. Sum-Product Variable Elimination Algorithm 

        思想就是求边缘分布,因为图的概率的表示形式,具体的算法操作会简单一些些,简述为:

        1. 将待消的随机变量看成一个随机变量,所有value 排序,每个value做2操作;                (似乎也不是特别必要,但好操作、好理解)

        2. 提不相关的factor ,对剩下的因子乘 、求和,返回总的因子;

        3. 最后返回的因子的集合ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值