(不保证正确性,只是笔记)
1. Markov Network 的点、边的意义
点: 随机变量
边: 相邻点的直接概率作用,可能没有很直观的现实意义
2. (1)图的概率表示
Gibbs 分布
两者形式相同—> (2)
(2)Markov network 的参数化表示
factor = clique potential (完全子图)
3. Sum-Product Variable Elimination Algorithm
思想就是求边缘分布,因为图的概率的表示形式,具体的算法操作会简单一些些,简述为:
1. 将待消的随机变量看成一个随机变量,所有value 排序,每个value做2操作; (似乎也不是特别必要,但好操作、好理解)
2. 提不相关的factor ,对剩下的因子乘 、求和,返回总的因子;
3. 最后返回的因子的集合ÿ