多层前馈神经网络的后向传播算法推导

本文详细介绍了多层前馈神经网络的结构,包括神经元之间的连接方式和激活函数。重点阐述了后向传播算法的推导过程,通过链式法则计算损失函数关于权重和阈值的梯度,从而利用梯度下降法优化网络参数,以更好地拟合训练数据。整个解析从最后一层开始,递归计算直至输入层,展示了数据在神经网络中的流动和参数更新的逻辑。
摘要由CSDN通过智能技术生成

神经网络模型定义

本文研究的多层前馈神经网络(Multi-layer Feedforward Neural Networks),包含多层神经元,每层神经元与下一层神经元完全连接,神经元之间不存在同层连接,也不存在跨层连接.

设神经网络的层数为 N , 其中包括输入层、输出层和隐含层。我们用 n 来表示模型的第 n 层( i[1,N] ).

设神经网络第 n 层的神经元数目为 Kn ,我们用 (n,k) 来表示模型的第 n 层的第 k 个神经元( k[1,Kn] ).

对于网络的第 n 层,其每一个神经元的输入都是上一层所有神经元的输出。将第 n 层的神经元的输入记为 x(n) ,将第 n 层第 k 个神经元的输出记为 y(n)k ,则有

x(n)=[y(n1)1,y(n1)2,,y(n1)Kn1]

设神经元 (n,k) 与上一层各神经元之间的连接权重为 w(n)k ,其维度为 Kn1 ,即上一层的神经元数目. 神经元 (n,k) 的激活阈值为 b(n)k . 因此,神经元 (n,k) 接收到的输入为:

z(n)k=w(n)kx(n)b(n)k=i=1Kn1w(n)k,ix(n)ib(n)k

我们使用Sigmoid函数 σ(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值