神经网络模型定义
本文研究的多层前馈神经网络(Multi-layer Feedforward Neural Networks),包含多层神经元,每层神经元与下一层神经元完全连接,神经元之间不存在同层连接,也不存在跨层连接.
设神经网络的层数为 N , 其中包括输入层、输出层和隐含层。我们用
设神经网络第 n 层的神经元数目为
对于网络的第 n 层,其每一个神经元的输入都是上一层所有神经元的输出。将第
x(n)=[y(n−1)1,y(n−1)2,⋯,y(n−1)Kn−1]
设神经元 (n,k) 与上一层各神经元之间的连接权重为 w(n)k ,其维度为 Kn−1 ,即上一层的神经元数目. 神经元 (n,k) 的激活阈值为 b(n)k . 因此,神经元 (n,k) 接收到的输入为:
z(n)k=w(n)k⋅x(n)−b(n)k=∑i=1Kn−1w(n)k,i⋅x(n)i−b(n)k
我们使用Sigmoid函数 σ(x