【学习总结】【超图理论】第四章 一些特殊的超图

【学习总结】
参考文献:
Bretto A. Hypergraph theory[J]. An introduction. Mathematical Engineering. Cham: Springer, 2013.

4.1 区间超图(Interval Hypergraphs)

令 V 是一个在 V 上具有全序 ≤ 的非空集,也就是说,对于任何两个不同的元素 x,y ∈ V,x ≤ y 或 y ≤ x。 这对 (V ; ≤) 称为完全或线性有序集。 给定任意两个不同的元素 x, y ∈ V ,我们定义闭区间 [x; y] 或 I (x; y) 为集合 {z ∈ V |x ≤ z ≤ y}。

(ps.设(A,≤)是偏序集,如果(A,≤)中的关系“≤”满足条件:对于任意的a,b∈A,a≤b或b≤a至少有一个成立,那么就称关系≤为序关系,称A为在这个关系下的全序集(也称有序集) )

如果在 V 上存在一个全序使得对于每个超边 e ∈ E,存在两个不同的顶点 x, y ∈ V 使得 e = I (x; y)。 一个超图(无环)是一个区间超图,如果它的顶点可以用 1, 2, 3, . . , n 来标记,使得每个超边由具有连续标签编号的顶点组成,即超图 H = (V ; E) 是一个区间超图,如果它的顶点可以完全排序,使得每个超边 e ∈ E 在这个顺序中引入一个区间。
在这里插入图片描述

引理 4.1 (MANTEL 1907) 如果 Γ = (V ; E) 是一个没有三角形的简单图,那么
∣ E ∣ ≤ ∣ V ∣ 2 4 |E| \le \frac{|V|^{2}}{4} E4V2

定理 4.1 如果 H 是连通有序超图,则:
(1) H是2-可着色的。
(2) α ( H ) ≥ ∣ V ( H ) ∣ 2 α(H) \ge \frac{|V(H)|}{2} α(H)2V(H)
(3)如果 H 是无三角形的,那么 ∣ E ( H ) ∣ ≤ ∣ V ( H ) ∣ 2 4 |E(H)| \le \frac{|V(H)|^{2}}{4} E(H)4V(H)2

定理 4.2(Helly 定理) 假设 e1, e2, . . . , ek 是 R d R^{d} Rd 的凸子集的有限族,且令 d < k。 如果这些集合的 d + 1 的每个交集都是非空的,那么整个族都有一个非空的交集,即:
⋂ j = 1 k e j ≠ ϕ . \bigcap_{j=1}^{k} e_{j} \ne \phi. j=1kej=ϕ.

定理 4.3 如果 H = (V; E) 是有序超图,则 H 具有 Helly 性质(参见第 2 章,第 2.2 节)。

4.2 单模超图(幺模超图 Unimodular Hypergraphs)

4.2.1 单模超图和超图的差异

4.2.1.1 单模超图

如果矩阵的任何方子矩阵的行列式等于 -1、0 或 1,则该矩阵是完全单模的。因此,完全单模矩阵的系数等于 -1、0 或 1(因为任何 1 × 1 方子矩阵都有一个行列式 等于 -1、0 或 1)。因此,完全单模矩阵的任何子矩阵都是完全单模的。
如果超图的关联矩阵是完全单模的,则该超图是单模的。 显然,完全单模矩阵的转置也是完全单模的。 同样的结论适用于完全单模矩阵的任何子矩阵。 有

引理 4.2 单模超图的对偶以及任何子超图或部分超图都是单模超图。

4.2.1.2 超图的差异

我们试图将超图的顶点集划分为两个类,以便理想情况下每个超边在两个类中包含相同数量的顶点。 差异描述了与这种理想情况的偏差。

形式上:令 {−1; 1} 是具有两个元素的乘法群,它是域 F 3 = Z 3 Z F_{3} = \frac{Z}{3Z} F3=3ZZ 的乘法群。 满映射
χ : V ( H ) → ± 1 x → χ ( x ) χ : V (H) → {±1}\\ x→ χ(x) χ:V(H)±1xχ(x)
是 2-着色,其中 -1 和 +1 是颜色。 这种着色将 V (H) 划分为两个颜色类别 χ − 1 ( − 1 ) 和 χ − 1 ( 1 ) χ^{-1}(−1) 和 χ^{−1}(1) χ1(1)χ1(1)。 对于任何超边 e ∈ E(H) 定义:
χ ( e ) = ∑ x ∈ e χ ( x ) . χ(e) = \sum_{x \in e}χ(x). χ(e)=xeχ(x).
H 与 χ 的差异和 H 的差异分别定义为
d i s c ( H , χ ) = max ⁡ e ∈ E ∣ χ ( e ) ∣ d i s c ( H ) = min ⁡ χ : V ( H ) → ± 1 d i s c ( H , χ ) disc(H,χ) = \max_{e \in E} |χ(e)|\\ disc(H) = \min_{χ:V(H) →{±1}}disc(H,χ) disc(H,χ)=eEmaxχ(e)disc(H)=χ:V(H)±1mindisc(H,χ)
H 的遗传差异(hereditary discrepancy)为:
h e r d i s c ( H ) = max ⁡ V ′ ⊆ V d i s c ( H ( V ′ ) ) herdisc(H) =\max_{V' \subseteq V} disc(H(V')) herdisc(H)=VVmaxdisc(H(V))

定理 4.5 设 H = (V ; E) 为超图,以下性质等价:

  • 超图 H 是单模的。
  • 对于所有 V‘ ⊆ V ,导出超图 H(V’ ) 具有公平的 2-着色(参见第 3 章)。
  • herdisc(H) ≤ 1

定理 4.6(切尔诺夫不等式)令 X1, X2, X3, . . . , Xn 是具有共同分布函数的独立随机变量
P ( X i = 1 ) = P ( X i = − 1 ) = 1 2 并 且 令 Y n = X 1 + X 2 + . . . + X n . P(X_{i} = 1) = P(X_{i} = -1) = \frac{1}{2} 并且令Y_{n} = X_{1} +X_{2}+...+X_{n}. P(Xi=1)=P(Xi=1)=21Yn=X1+X2+...+Xn.
然后
P ( Y n > λ ) < e x p ( − λ 2 2 n ) 对 于 任 何 λ > 0 ( e x p 是 e 为 底 数 的 指 数 运 算 ) P(Y_{n} > λ ) < exp(\frac{- λ^{2}}{2n}) 对于任何 λ>0 (exp是e为底数的指数运算) P(Yn>λ)<exp(2nλ2)λ>0(expe)

定理 4.7 如果 H = (V ; E) 是一个超图,使得 |V | = n 和 |E| = m 然后 d i s c ( H ) ≤ 2 n ⋅ l n ( 2 m ) disc(H) ≤ \sqrt{2n ·ln(2m)} disc(H)2nln(2m)

命题 4.1 区间超图是单模的。

4.3 平衡超图

如果每个奇数环(具有奇数长度的环)x = x1, e1, x2, e2, x3, …, . . xk, ek, xk+1 = x有一个环的超边 ei,它至少包含环的三个顶点,则超图 H = (V; E) 是平衡的

如果每个周期 x = x1, e1, x2, e2, x3, … , . . , xk, ek, xk+1 = x, 长度 ≥ 3 的环的超边 ei 至少包含环的三个顶点,则它是完全平衡的

在这里插入图片描述
命题 4.2 如果 H = (V; E) 是一个完全平衡的超图 (或平衡超图) 那么每个部分超图 H = (V; E) 是完全平衡的 (或平衡的)

命题 4.3 设 H = (V ; E) 是一个超图。 以下语句是等价的

  1. H 是完全平衡的(或平衡的);
  2. 每个子超图 H 是完全平衡的(或平衡的);
  3. 每个导出子超图 H(V ) 是完全平衡的(或平衡的)。

命题 4.4 当且仅对偶 H ∗ 完全平衡(平衡)时,超图 H 是完全平衡的(平衡)。

命题 4.5 如果 H = ( V ; E = ( e i ) i ∈ I ) H = (V ; E = (e_{i})_{i∈I} ) H=(V;E=(ei)iI) 是一个(完全)平衡的超图,那么 H 具有 Helly 属性并且它是共形的。

推论 4.1 任何(完全)平衡的超图都具有强 Helly 属性。
引理 4.3 对于任何(完全)平衡的超图,它的线图是弦图。

定理 4.8 每一个(完全)平衡的超图 H 都是一个子树超图。

命题 4.6 如果一个超图 H 是完全平衡的,那么 H 的所有子超图都是子树超图。

命题 4.7 如果超图 H 的所有子超图都是对偶子树超图,则 H 是完全平衡的。

命题 4.8 超图 H = (V; E) 是平衡的,当且仅当对于每个 V‘ ⊆ V ,导出子超图 H(V’ ) 满足 χ(H(V’ )) ≤ 2。

4.4 正态超图(Normal Hypergraphs)

我们提醒读者,q(H) 是色度指数,它是 H 的最小超边 k-着色的大小。如果 H 的每个部分超图 H’ 都具有超边着色属性,则超图 H 是正态的,即
q ( H ′ ) = Δ ( H ′ ) . q(H') = Δ(H'). q(H)=Δ(H).

图 4.4 给出了一个正态超图的例子。
在这里插入图片描述

定理 4.9(Perfect Graph Theorem (Lovász 1972))一个图是完美的当且仅当它的补集是完美的。
备注 4.2 例如弦图、二部图(这些图的定义参见第 2 章)是完美的 [Vol09]。

定理 4.10 任何正态超图 H 都是双色超图。

定理 4.11 超图 H 是正态的当且仅当每个部分超图 H’ ⊆ H 都具有 König 性质。

命题 4.9 一个超图 H 是正态的,当且仅当它满足 Helly 性质并且它的线图 L(H) 是完美的。

推论 4.2 每个子树超图都是正态的。

4.5 树栖超图(Arboreal Hypergraphs)、无环性和超树分解

设 H = (V ; E) 是一个简单的超图。 如果 V 的子集 A 验证以下两个属性,则它是一个关节集( articulation set)

  • 有两个超边 e1 和 e2,使得: A = e1 ∩ e2;
  • 导出子超图 H(V \ A) 不连通或减少到空超图。

超图中的关节集与图中的关节顶点起相同的作用。我们可以将这个概念推广到非连通超图:导出子超图 H(V\A) 比 H 具有更多的连通分量。图 4.5 给出了一个关节集的例子。
在这里插入图片描述
超图约简(hypergraph reduction)是使超图变得简单的过程,即
如 果 e i ⊆ e j , i ≠ j 移 除 e i 。 如果 e_{i} ⊆ e _{j}, i \ne j 移除 e_{i}。 eiej,i=jei
在这种情况下,我们说超图是简化的。

如果任何长度大于 3 的环具有两个相邻的非连续顶点,则简单超图是弦的。 这个定义扩展了弦图的定义。 不难看出,当且仅 H 是弦的,2-section [H]2 是弦的。

定义 4.1 一个超图 H = (V; E) 是一个对偶子树超图,如果在超边 E 的集合上有一个树 T,它是 T 的顶点,使得对于所有 x ∈ V,超边的集合 H(x) 包含 x 导出 T 的子树。 这特别意味着超边集 H(x) 形成了 T 的连接集。 换句话说,如果 H∗ 是子树超图,则 H 是对偶子树超图。

4.5.1 无环超图

一个简单的超图 H 是 α-无环的,如果 H 的任何连接的简约(在下面定义的意义上)导出子超图具有一个关节集。 α-无环性存在另一种定义:

  • GR1:删除度数最大为1的任意顶点;
  • 删除 e i , 如 果 e i ⊆ e j , i ≠ j . e_{i}, 如果e_{i} \subseteq e_{j}, i \ne j. ei,eiej,i=j.

定理 4.12 设 H = (V; E) 是一个超图。 以下属性是等效的。
(a) H 是α-无环的。
(b) H 是子树超图的对偶。
© H * 是一个子树超图。
(d) H 是弦超图。
(e) Graham归约终止。

简单超图中的β-环是一个环:
( x 0 , e 1 , x 1 , e 2 , x 2 , . . . , e k , x k = x 0 ) , k ≥ 3 (x_{0}, e_{1}, x_{1}, e_{2}, x_{2}, . . . , e_{k}, x_{k} = x_{0}), k ≥ 3 (x0,e1,x1,e2,x2,...,ek,xk=x0),k3
使得,对于所有 i ∈ {0, 1, 2, … . . k − 1},xi 属于 ei 和 ei+1(我们用 ek 表示 e0)并且没有其他 e j 来自环。

如果超图不包含任何 β-环,则它是 β-无环的。

定理 4.13 设 H = (V ; E) 是一个超图。 以下属性是等效的:
(a) 超图 H 是 β-无环的。
(b) H 是完全平衡的。
© 它的所有子超图都是 α-无环的。

4.5.2 树栖和共树栖超图(Arboreal and Co-Arboreal Hypergraphs)

我们将看到(命题 4.10 和定理 2.2)子树超图等价于树栖超图,因此子树超图的对偶等价于共树栖超图。 我们提醒读者,如果满足以下条件,超图 H 是树栖的:

  • H 具有 Helly 属性。
  • 每个长度至少为 3 的环包含三个具有非空交点的超边。

命题 4.10 超图 H 是树栖的,当且仅当它具有 Helly 属性并且它的线图 L(H) 是三角的(弦)。

简单超图中的γ-环是一个环
( x 1 , e 1 , x 2 , e 2 , x 3 , . . . , e k , x k = x 1 ) , k ≥ 3 (x_{1}, e_{1}, x_{2}, e_{2}, x_{3}, . . . , e_{k}, x_{k} = x_{1}), k ≥ 3 (x1,e1,x2,e2,x3,...,ek,xk=x1),k3
使得,对于所有 i ∈ {1, 2, . . . k − 1},xi 属于 ei 和 ei+1 且不属于环中的其他 e j; 顶点 xk 属于 ek 和 e1 但它可能属于环的另一个超边。 所以γ-循环和β-循环之间的区别就在于最后一个顶点可能属于环的几个超边。
如果超图不包含任何 γ -环,则它是 γ -无环的。

4.5.3 树和超树分解

设 H = (V ; E) 是一个超图。 H 的树分解是一个元组 (T ; B),其中 T = (V (T ), E(T )) 是一棵有根树, V (T ) 是顶点的有限集, E(T ) 是T 的边集 并且 B = ( B t ) t ∈ V ( T ) B= (B_{t})_{t∈V (T )} B=(Bt)tV(T) 是 V 的有限子集族,称为 T 的(bags),满足:

  1. 对于每个 e ∈ E 有 t ∈ V (T ) 使得 e ⊆ Bt。 这种条件称为覆盖条件
  2. 对于每个 x ∈ V,集合 {t ∈ V (T ) : x ∈ Bt} 是非空的并且在 T 中连通(T是一个子树)。 这种条件称为连通性条件

H 的树分解的宽度为:
w ( T , B ) = s u p { ∣ B t ∣ − 1 : t ∈ V ( t ) } ∈ N w(T,B) = sup\{|B_{t}| -1:t \in V(t)\} \in N w(T,B)=sup{Bt1:tV(t)}N

H 的树宽(tree-width)为:
t w ( H ) = m i n { w ( T , B ) : w ( T , B ) 是 H 的 树 分 解 } tw(H) = min\{w(T, B) : w(T, B) 是 H 的树分解\} tw(H)=min{w(T,B):w(T,B)H}

我们提醒读者,对于每个集合 X , ⋃ X = { a : ∃ x ∈ X , a ∈ x } X,\bigcup X = \{a : ∃x ∈ X, a ∈ x\} XX={a:xX,ax}

我们可以通过以下方式概括这种分解:
超图 H = (V; E) 的超树分解是一个三元组 (T, B, C),其中:
(1) (T, B) 是 H 的树分解
(2) C = ( C t ) t ∈ V ( T ) C = (C_{t})_{t∈V (T )} C=(Ct)tV(T) 是 E 的子集族,使得:
(a) 对于每个 t ∈ V (T ),我们有: B t ⊆ C t B_{t} ⊆ C_{t} BtCt
(b) 对于每个 t ∈ V (T ), ⋃ C t ∩ B T t ⊆ B t \bigcup C_{t} ∩ B_{T_{t}} ⊆ B_{t} CtBTtBt,其中 Tt 表示 T 的最大子树,根为 t, B T t = ∪ s ∈ V ( T t ) B s B_{T_{t}} = \cup _{s∈V (T_{t} )} B_{s} BTt=sV(Tt)Bs

H 的超树分解的宽度为:
w ( T , B , C ) = s u p { ∣ C t ∣ : t ∈ V ( T ) } ∈ N w(T, B, C) = sup\{|C_{t}| : t ∈ V (T )\} ∈ N w(T,B,C)=sup{Ct:tV(T)}N
H 的树宽为:
h w ( H ) = m i n { w ( T , B , C ) : w ( T , B , C ) 是 H 的 超 树 分 解 } hw(H) = min\{w(T, B, C) : w(T, B, C) 是 H 的超树分解\} hw(H)=min{w(T,B,C):w(T,B,C)H}

命题 4.11 超图 H = (V ; E) 是 α-无环的当且仅当存在超树分解 (T, B, C) 使得对于每个树顶点 t ∈ V (T ),存在超边 e ∈ E 使得 C t = e 和 B t = e C_{t} = e 和 B_{t} = e Ct=eBt=e

推论 4.3 超图 H = (V ; E) 是 α-无环的当且仅当 hw(H) ≤ 1。

4.6 平面超图 (Planar Hypergraphs)

一个简单的超图 H = (V ; E) 允许在平面中嵌入(embedding),如果每个顶点恰好对应于平面的唯一点,并且每个超边恰好对应于同胚于封闭圆盘的唯一封闭区域。 封闭区域对应于超边包含与该超边的顶点对应的点。

定义 4.2 一个简单超图H = (V;E)允许平面嵌入,如果它允许这样的嵌入:

  • 代表超边的区域的边界包含对应于超边顶点的点。
  • 此外,两个这样的区域的交集是对应于对应超边的交集的顶点的点的集合。

与超边不对应的平面的连接区域形成超图的平面嵌入的(faces)。

定义 4.3 一个简单的超图 H = (V; E) 有一个图平面嵌入,如果有一个平面多重图 Γ 使得 V (Γ ) = V (H) 和 Γ 可以在平面中绘制 两种颜色(黑色和白色),并满足:

  • 在 Γ 的黑面和 H 的超边之间存在一个双射,使得:
    – 一个顶点与 Γ 的黑面相交(即它在黑面的边界上)当且仅当它与 H 的相应超边相交。

定理 4.14 设 H = (V; E) 是一个简单的超图。 以下三个属性是等价的
(i) 超图 H 允许平面嵌入;
(ii) 超图 H 允许图平面嵌入;
(iii) 入射图 I (H) 是平面的。

命题 4.12 一个简单的超图 H 是平面的当且仅当它的对偶 H∗ 是平面的。

备注 4.3 设 H 为平面超图。 在下面,我们假设 H 的环是 H 嵌入的面的边界

引理 4.4 设 H = (V; E) 是一个平面简单的超图,嵌入到具有 f 个面的平面中。 令 I (H) 为其嵌入在具有 f '个面的平面中的关联图。然后 f = f '。

命题 4.13 设 H = (V; E) 是平面简单超图 具有 |V| = n 和 |E| = m 嵌入到具有 f 个面的平面中。 然后:
在这里插入图片描述

在这里插入图片描述

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
OpenLayers 是一个开源的 JavaScript 库,用于在 web 页面上显示地图。它可以与多种地图服务提供商的 API 进行集成,包括超图(SuperMap)。 如果你想在 web 页面上显示超图地图,可以使用 OpenLayers 的功能来加载和显示超图地图数据。首先,确保你已经引入了 OpenLayers 库的 JavaScript 文件。然后,可以按照以下步骤来使用 OpenLayers 加载超图地图数据: 1. 创建一个 HTML 元素,用于容纳地图,例如一个 `<div>` 元素。 2. 在 JavaScript 中,使用 OpenLayers 的 `Map` 类来创建一个地图实例,并指定地图的容器元素的 ID。 3. 创建一个超图的图层实例,使用 OpenLayers 的 `Layer.SuperMapREST` 类,并指定超图的 URL、图层名称等参数。 4. 将超图图层添加到地图实例中,使用 `addLayer` 方法。 5. 设置地图的视图范围和缩放级别,使用 `setView` 方法。 6. 最后,使用 `render` 方法将地图渲染到指定的容器元素中。 以下是一个简单的示例代码: ```html <!DOCTYPE html> <html> <head> <title>OpenLayers + 超图示例</title> <style> #map { width: 100%; height: 400px; } </style> </head> <body> <div id="map"></div> <script src="https://openlayers.org/en/v6.5.0/build/ol.js"></script> <script> var map = new ol.Map({ target: 'map', layers: [ new ol.layer.Tile({ source: new ol.source.OSM() // 使用 OpenStreetMap 作为底图 }), new ol.layer.SuperMapREST({ url: 'http://your-supermap-server.com/iserver/services/map-地图名/rest/maps/地图名称', layersID: '图层名称' }) ], view: new ol.View({ center: ol.proj.fromLonLat([经度, 纬度]), zoom: 缩放级别 }) }); </script> </body> </html> ``` 请将代码中的 `http://your-super

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值