【学习总结】【超图理论】第一章 超图:基本概念

【学习总结】
参考文献:
Bretto A. Hypergraph theory[J]. An introduction. Mathematical Engineering. Cham: Springer, 2013.

可以阅读以下文献,一个在工程领域建模的示例
https://doi.org/10.1016/j.comcom.2022.08.016

1.1 超图的定义

(1)超图

在有限集合 V V V上用 H = ( V ; E = ( e i ) i ∈ I ) H=(V;E = (e_{i})_{i∈I}) H=(V;E=(ei)iI)表示的超图H是 V V V的集合族 ( e i ) i ∈ I (e_{i})_{i∈I} (ei)iI,( I I I是有限的索引集),称为超边。有时 V V V V ( H ) V(H) V(H)表示, E E E E ( H ) E(H) E(H)表示。

( e j ) j ∈ J , J ⊆ I (e_{j})_{j∈J},J⊆ I (ej)jJ,JI E = ( e i ) i ∈ I E=(e_{i})_{i∈I} E=(ei)iI的超边的一个子族,我们用 V ( U j ∈ J e j ) V(U_{j∈J}e_{j}) V(UjJej)表示属于 U j ∈ J e j U_{j∈J}e_{j} UjJej的顶点集合,但有时我们用 e e e表示 V ( e ) V(e) V(e)。例如,有时我们用 e ∩ V ‘ e∩V‘ eV来表示 V ( e ) ∩ V ‘ , V ‘ ⊆ V V(e)∩V‘,V‘⊆V V(e)V,VV

如果 ⋃ i ∈ I e i = V \bigcup_{i∈I}^{}e_{i}=V iIei=V
则超图没有孤立顶点。如果其中顶点 x x x是孤立的: x ∈ V ∖ ⋃ i ∈ I e i x∈V\setminus\bigcup_{i∈I}^{}e_{i} xViIei

(2)相邻、关联

如果存在包含两个顶点的超边,则超图中的两个顶点是相邻的(adjacent)。 特别是,如果 { x } {\{x\}} {x}是超边,则 x x x与其自身相邻。 如果超图中的两个超边的交点不为空,则它们是关联的( incident)

(3)导出子超图、子超图、部分超图

详见原文。

(4)度数、秩、K-正则超图、K一致超图

详见原文。

1.2 超图示例

在这里插入图片描述

1.3 超图的代数定义

1.3.1矩阵、超图和熵

(1)关联矩阵和邻接矩阵

H = ( V ; E ) H = (V ; E) H=(V;E) 是一个超图,
V = { v 1 , v 2 , , . . . , v n , } 和 E = ( e 1 , e 2 , . . . , e m ) V =\{v_{1}, v_{2},, . . . , v_{n},\} 和 E = (e_{1}, e_{2}, . . . , e_{m}) V={v1,v2,,...,vn,}E=(e1,e2,...,em)
并且
⋃ i ∈ I e i = V \bigcup_{i∈I}e_{i} = V iIei=V
(没有孤立的顶点)。 那么 H 有一个 n × m n × m n×m 关联矩阵 A = ( a i j ) A = (a_{ij}) A=(aij) 其中:
a i j = ⎱ 0 其他 ⎰ 1 如果 v i ∈ e j a_{ij} = ^{\lmoustache 1 如果v_{i}∈e_{j}}_{\rmoustache 0 其他} aij=0其他1如果viej
这个矩阵也可以写成一个 m × n m × n m×n 矩阵。 例如图 1.4 左侧超图的关联矩阵是 3 × 5 矩阵:
在这里插入图片描述
在这里插入图片描述
对偶矩阵,图1.4右侧,是上面矩阵的转置。也很容易看出,任何导出子超图的关联矩阵(H的子超图,部分超图)是H的关联矩阵的子矩阵。设 H = ( V ; E ) H = (V; E) H=(V;E) 是一个超图。 H 的邻接矩阵 A(H) 定义如下:
它是一个正方形矩阵,其行和列由 H 的顶点索引,对于所有 x , y ∈ V x, y ∈ V x,yV , x ≠ y x ≠ y x=y 每一条 a x , y = ∣ e ∈ E : x , y ∈ e ∣ 并且 a x , x = 0 a_{x,y} = |{e ∈ E : x, y ∈ e}| 并且 a_{x,x} = 0 ax,y=eE:x,ye并且ax,x=0
这个矩阵是对称的,所有的 a x , y a_{x,y} ax,y 都属于 N。它也是多重图的矩阵。例如图 1.4 中超图 H 的邻接矩阵为:
在这里插入图片描述

(2)拉普拉斯矩阵

定义 D ( x ) = ∑ y ∈ V a x , y D(x)=\sum_{y∈V}a_{x,y} D(x)=yVax,y. H 的拉普拉斯矩阵是这样的矩阵:
L ( H ) = D − A ( H ) , 其中 D = d i a g ( D ( x 1 ) , D ( x 2 ) , . . . , D ( x n ) ) . L(H) = D-A(H),其中D=diag(D(x_{1}), D(x_{2}), ...,D(x_{n})). L(H)=DA(H),其中D=diag(D(x1),D(x2),...,D(xn)).

(3)超图熵

我们可以通过以下方式定义代数上的超图熵(algebraic hypergraph entropy) I ( H ) I (H) I(H)
I ( H ) = − ∑ i = 1 n λ i l o g 2 λ i I(H)=-\sum_{i=1}^{n}\lambda_{i}log_{2}\lambda_{i} I(H)=i=1nλilog2λi

1.3.2 超图的相似度和度量

(1)相似度函数

H = ( V ; E = ( e i ) i ∈ I ) 和 H ‘ = ( V ; E ’ = ( e i ′ ) i ∈ I ) H=(V;E=(e_{i})_{i∈I})和H‘=(V;E’=(e'_{i})_{i∈I}) H=(V;E=(ei)iI)H=(V;E=(ei)iI)是没有空超边的超图。
f P ( E ) 和 f P ( E ′ ) f_{P(E)}和f_{P(E')} fP(E)fP(E)是映射
f P ( E ) : P ( E ) → P ( E ) ⊆ P ( P ( V ) ) f_{P(E)}:P(E)\to P(E) \subseteq P(P(V)) fP(E):P(E)P(E)P(P(V))

f P ( E ′ ) : P ( E ′ ) → P ( E ′ ) ⊆ P ( P ( V ) ) f_{P(E')}:P(E')\to P(E') \subseteq P(P(V)) fP(E):P(E)P(E)P(P(V))
假设 f p ( E ) ( A ) = ϕ f_{p(E)}(A)=\phi fp(E)(A)=ϕ表示 A = ϕ A=\phi A=ϕ f p ( E ’ ) ( A ) = ϕ f_{p(E’)}(A)=\phi fp(E)(A)=ϕ表示 A = ϕ A=\phi A=ϕ我们现在通过以下方式定义相似度函数
P ( E ) × P ( E ′ ) → R + P(E)\times P(E') \to R^{+} P(E)×P(E)R+
( A ≠ ϕ , B ≠ ϕ ) ⊢ → s ( A ; B ) = ∣ f P ( E ) ( A ) ∩ f P ( E ′ ) ( B ) ∣ ∣ f P ( E ) ( A ) ∪ f P ( E ′ ) ( B ) ∣ (A\ne\phi, B\ne \phi) \vdash\to s(A;B) = \frac{|f_{P(E)}(A)\cap f_{P(E')}(B)|}{|f_{P(E)}(A)\cup f_{P(E')}(B)|} (A=ϕ,B=ϕ)⊢→s(A;B)=fP(E)(A)fP(E)(B)fP(E)(A)fP(E)(B)
有时我们会使用以下简化:
f E : E → P ( E ) f_{E}:E \to P(E) fE:EP(E)
e ⊢ → f E ( e ) = f P ( E ) ( { e } ) e\vdash\to f_{E}(e) = f_{P(E)}(\{e\}) e⊢→fE(e)=fP(E)({e})

我们现在介绍如下相似度函数:
E × E ′ → R + E\times E' \to R^{+} E×ER+
( e , e ′ ) ⊢ → s ( e , e ′ ) = ∣ f P ( E ) ( e ) ∩ f P ( E ′ ) ( e ′ ) ∣ ∣ f P ( E ) ( e ) ∪ f P ( E ′ ) ( e ′ ) ∣ (e, e') \vdash\to s(e, e') = \frac{|f_{P(E)}(e)\cap f_{P(E')}(e')|}{|f_{P(E)}(e)\cup f_{P(E')}(e')|} (e,e)⊢→s(e,e)=fP(E)(e)fP(E)(e)fP(E)(e)fP(E)(e)

(2)示例

详见原文。

1.3.2.1 正核和相似度

详见原文。

1.3.2.2 超图的度量和相似度

命题 设 H = (V ; E) 是在 E 上的单射映射的超图(即 f ( e ) = f ( e ′ ) = ⇒ e = e ′ f (e) = f (e' ) =⇒ e = e' f(e)=f(e)=⇒e=e )并且 s 是一个相似度函数,那么: s ~ ( e , e ′ ) = 1 − s ( e , e ′ ) 是一个度量 \widetilde{s}(e, e') = 1- s(e, e')是一个度量 s (e,e)=1s(e,e)是一个度量
证明
详见原文。

所以 s ~ ( e , e ′ ) \widetilde{s}(e, e') s (e,e)是一个称为超图相似度的度量。
请注意,如果 f f f 不是单射映射,则 s ~ ( e , e ′ ) \widetilde{s}(e, e') s (e,e)伪度量,即度量定义中的公理 1 不正确。

1.3.3 超图态射;群与对称

详见原文。

1.4 超图的推广

超图的概念可以通过允许超边变成顶点来概括。 因此,超边 e 可能不仅包含顶点,还可能包含超边,这将被认为与 e 不同。 例如:

  • V = { x 1 ; x 2 ; x 3 } V=\{x_{1};x_{2};x_{3}\} V={x1;x2;x3}
  • E = { e 1 = { x 1 ; x 2 } ; e 1 = { x ! ; x 2 ; e 1 } ; e 1 = { x ! ; e 1 ; e 2 } } E=\{e_{1}=\{x_{1};x_{2}\};e_{1}=\{x_{!};x_{2};e_{1}\};e_{1}=\{x_{!};e_{1};e_{2}\}\} E={e1={x1;x2};e1={x!;x2;e1};e1={x!;e1;e2}}

这类超图的关联矩阵是一个矩阵,其大小是E的基数和V的基数加上E的基数。
例如下面的矩阵是上述超图的关联矩阵:
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值