import java.util.ArrayList;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.relaxng.datatype.Datatype;
/**
* @author 作者 E-mail:
* @version 创建时间:2016年3月16日 下午9:46:11
* 类说明
*/
public class RDD2DataFrame {
public static void main( String[] args ) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
JavaRDD<Str
使用Java实战RDD与Dataframe动态转换
最新推荐文章于 2024-08-29 08:02:12 发布
本文展示了如何在Java中将RDD转换为DataFrame,并进行动态元数据构建、DataFrame操作,包括从文本文件读取数据,转换为Row对象,构建DataFrame结构,注册临时表,执行SQL查询以及结果处理和持久化。
摘要由CSDN通过智能技术生成