数学符号名称,解释,定义加举例

数学符号表

数学上,有一组常在数学表达式中出现的符号。数学工作者熟悉这些符号,不是每次使用都加以说明。所以,对于数学初学者,下面的列表给出了很多常见的符号包括名称、读法和应用领域。另外,第三栏有一个非正式的定义,第四栏有个简单的例子。

注意,有时候不同符号有相同含义,而有些符号在不同的上下文中有不同的含义。

符号

名称

定义

举例

读法

数学领域

=

等号

x = y 表示 x 和 y 是相同的东西或其值相等。

1 + 1 = 2

等于

所有领域

不等号

x ≠ y 表示 x 和 y 不是相同的东西或其值不相等。

1 ≠ 2

不等于

所有领域

<

>

严格不等号

x < y 表示 x 小于y

x > y 表示 x 大于y

3 < 4
5 > 4

小于,大于

序理论



不等号

x ≤ y 表示 x 小于或等于y

x ≥ y 表示 x 大于或等于y

3 ≤ 4;5 ≤ 5
5 ≥ 4;5 ≥ 5

小于等于,大于等于

序理论

+

加号

6 + 3 表示 6 加 3。

6 + 3 = 9

算术

减号

6 − 3 表示 6 减 3。

6 − 3 = 3

算术

负号

−3 表示 3 的负数。

−(−5) = 5

算术

补集

A − B 表示包含所有属于 A 但不属于 B 的元素的集合。

{1,2,4} − {1,3,4} = {2}

集合论

×

乘号

6 × 3 表示 6 乘以 3。

6 × 3 = 18

乘以

算术

直积

X × Y 表示所有第一个元素属于 X,第二个元素属于 Y 的有序对的集合。

{1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}

… 和…的直积

集合论

向量积

u × v 表示向量 u 和 v 的向量积。

(1,2,5) × (3,4,−1) = (−22, 16, − 2)

向量积

向量代数

÷

/

除号

6 ÷ 3 或 6 / 3 表示 6 除以 3 或 3 除 6。

6 ÷ 3 = 2

12/4 = 3

除以

算术


 

根号

表示其平方为 x 的正数。

 

…的平方根

实数

复根号

若用极坐标表示复数 z = r exp(iφ)(满足 -π < φ ≤ π),则√z = √r exp(iφ/2)。

 

…的平方根

复数

| |

绝对值

|x| 表示实数轴(或复平面)上 x 和 0 的距离。

|3| = 3, |-5| = |5|
|i| = 1, |3+4i| = 5

…的绝对值

!

阶乘

n! 表示连乘积 1×2×…×n

4! = 1 × 2 × 3 × 4 = 24

…的阶乘

组合论

~

概率分布

X ~ D 表示随机变量 X 概率分布为 D

X ~ N(0,1)标准正态分布

满足分布

统计学





实质蕴涵

A ⇒ B 表示 A 真则 B 也真;A 假则 B 不定。

→ 可能和 ⇒ 一样,或者有下面将提到的函数的意思。

⊃ 可能和 ⇒ 一样,或者有下面将提到的父集的意思。

x = 2 ⇒ x2 = 4 为真,但 x2 = 4 ⇒ x = 2 一般情况下为假(因为 x 可以是 −2)。

推出,若…则 …

命题逻辑



实质等价

A ⇔ B 表示 A 真则 B 真,A 假则 B 假。

x + 5 = y +2 ⇔ x + 3 = y

当且仅当

命题逻辑

¬

˜

逻辑非

命题 ¬A 为真当且仅当 A 为假。

将一条斜线穿过一个符号相当于将 "¬" 放在该符号前面。

¬(¬A) ⇔ A
x ≠ y ⇔ ¬(x = y)

非,不

命题逻辑

逻辑与交运算

若 A 为真且 B 为真,则命题 A ∧ B 为真;否则为假。

n < 4 ∧ n >2 ⇔ n = 3,当 n 是自然数

命题逻辑格理论

逻辑或并运算

若 A 或 B(或都)为真,则命题 A ∨ B 为真;若两者都假则命题为假。

n ≥ 4 ∨ n ≤ 2 ⇔ n ≠ 3,当 n 是自然数

命题逻辑格理论

 

 

异或

若 A 和 B 刚好有一个为真,则命题 A ⊕ B 为真。

A ⊻ B 的意义相同。

A) ⊕ A 恒为真,A ⊕ A 恒为假。

异或

命题逻辑布尔代数

全称量词

∀ xP(x) 表示 P(x) 对于所有 x 为真。

∀ n ∈ Nn2 ≥ n

对所有;对任意;对任一

谓词逻辑

存在量词

∃ xP(x) 表示存在至少一个 x 使得 P(x) 为真。

∃ n ∈ Nn 为偶数

存在

谓词逻辑

!

唯一量词

∃! xP(x) 表示有且仅有一个 x 使得 P(x) 为真。

∃! n ∈ Nn + 5 = 2n

存在唯一

谓词逻辑

:=



:

定义

x := y 或 x ≡ y 表示 x 定义为 y的一个名字(注意:≡ 也可表示其它意思,例如全等)。

P :⇔ Q 表示 P 定义为 Q 的逻辑等价。

cosh x := (1/2)(exp x + exp (−x))

A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)

定义为

所有领域

{ , }

集合括号

{a,b,c} 表示 ab,c 组成的集合。

N = {0,1,2,…}

…的集合

集合论

{ : }

{ | }

集合构造记号

{x : P(x)} 表示所有满足 P(x) 的 x 的集合。

{x | P(x)} 和 {x : P(x)} 的意义相同。

{n ∈ N : n2 < 20} = {0,1,2,3,4}

满足…的集合

集合论



{}

空集

∅ 表示没有元素的集合。

{} 的意义相同。

{n ∈ N : 1 < n2 < 4} = ∅

空集

集合论



元素归属性质

a ∈ S 表示 a 属于集合 Sa ∉ S 表示 a 不属于 S

(1/2)−1 ∈ N

2−1 ∉ N

属于;不属于

所有领域



子集

A ⊆ B 表示 A 的所有元素属于 B

A ⊂ B 表示 A ⊆ B 但 A ≠ B

A ∩ B ⊆ AQ ⊂ R

…的子集

集合论



父集

A ⊇ B 表示 B 的所有元素属于 A

A ⊃ B 表示 A ⊇ B 但 A ≠ B

A ∪ B ⊇ BR ⊃ Q

…的父集

集合论

并集

A ∪ B 表示包含所有 A 和 B 的元素但不包含任何其他元素的集合。

A ⊆ B ⇔ A ∪ B = B

…和…的并集

集合论

交集

A ∩ B 表示包含所有同时属于 A 和 B 的元素的集合。

{x ∈ R : x2 = 1} ∩ N = {1}

…和…的交集

集合论

\

补集

A \ B 表示所有属于 A 但不属于 B 的元素的集合。

{1,2,3,4} \ {3,4,5,6} = {1,2}

减;除去

集合论

( )

函数应用

f(x) 表示 f 在 x 的值。

f(x) := x2,则 f(3) = 32 = 9。

f(x)

集合论

优先组合

先执行括号内的运算。

(8/4)/2 = 2/2 = 1;8/(4/2) = 8/2 = 4

 

所有领域

ƒ :X
Y

函数箭头

ƒX → Y 表示 ƒ 从集合 X 映射到集合 Y

ƒZ → N 定义为 ƒ(x) = x2。

从…到…

集合论

o

复合函数

fog 是一个函数,使得 (fog)(x) = f(g(x))。

若 f(x) = 2x,且 g(x) = x + 3,则 (fog)(x) = 2(x + 3)。

复合

集合论

 

N

 

自然数

N 表示 {1,2,3,…},另一定义参见自然数条目。

{|a| : a ∈ Z} = N

N

 

Z

 

整数

Z 表示 {…,−3,−2,−1,0,1,2,3,…}。

{a : |a| ∈ N} = Z

Z

 

Q

 

有理数

Q 表示 {p/q : p,q ∈ Zq ≠ 0}。

3.14 ∈ Q

π ∉ Q

Q

 

R

 

实数

R 表示 {limn→∞ an : ∀ n ∈ Nan ∈ Q, 极限存在}。

π ∈ R

√(−1) ∉ R

R

 

C

 

复数

C 表示 {a + bi : a,b ∈ R}。

i = √(−1) ∈ C

C

无穷

∞ 是扩展的实数轴上大于任何实数的数;通常出现在极限中。

limx→0 1/|x| = ∞

无穷

π

圆周率

π 表示周长和直径之比。

A = πr2 是半径为 r 的圆的面积

pi

几何

|| ||

范数

||x|| 是赋范线性空间元素 x 的范数。

||x+y|| ≤ ||x|| + ||y||

…的范数;…的长度

线性代数

求和

k=1n ak 表示 a1 + a2 + … + an.

k=14 k2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30

从…到…的和

算术

求积

k=1n ak 表示 a1a2···an.

k=14 (k + 2) = (1 + 2)(2 + 2)(3 + 2)(4 + 2) = 3 × 4 × 5 × 6 = 360

从…到…的积

算术

直积

i=0nYi 表示所有 (n+1)-元组 (y0,…,yn)。

n=13R = Rn

…的直积

集合论

'

导数

f '(x)函数fx点的导数,也就是,那里的切线斜率

若 f(x) = x2, 则 f '(x) = 2x

… 撇; …的导数

微积分

不定积分 或 反导数

∫ f(x) dx 表示导数为f的函数.

x2 dx = x3/3

…的不定积分; …的反导数

微积分

定积分

ab f(x) dx 表示 x-轴和 f 在 x = ax = b之间的函数图像所夹成的带符号面积

∫0b x2 dx = b3/3;

从…到…以…为变量的积分

微积分

梯度

f (x1, …, xn) 偏导数组成的向量 (df / dx1, …, df / dxn).

若 f (x,y,z) = 3xy + z2 则 ∇f = (3y, 3x, 2z)

…的(delnabla梯度)

微积分

偏导数

设有f (x1, …, xn), ∂f/∂xi是f的对于xi的当其他变量保持不变时的导数.

若 f(x,y) = x2y, 则 ∂f/∂x = 2xy

…的偏导数

微积分

边界

M 表示M的边界

∂{x : ||x|| ≤ 2} =
{x : || x || = 2}

…的边界

拓扑

次数

f(x) 表示f(x)的次数( 也记作degf(x) )

 

…的次数

多项式

垂直

x ⊥ y 表示 x 垂直于y; 更一般的 x正交于y.

若 lmmn 则 l || n.

垂直于

几何

底元素

x = ⊥ 表示 x是最小的元素.

x : x ∧ ⊥ = ⊥

底元素

格理论

蕴含

A ⊧ B 表示A蕴含B, 在A成立的每个 模型中, B也成立.

A ⊧ A ∨ ¬A

蕴含;

模型论

推导

x ⊢ y 表示 y 由 x导出.

A → B ⊢ ¬B → ¬A

从…导出

命题逻辑谓词逻辑

正则子群

N ◅ G 表示 NG的正则子群.

Z(G) ◅ G

是…的正则子群

群论

/

商群

G/H 表示G 其子群H的商群.

{0, a, 2abb+ab+2a} / {0, b} = {{0, b}, {ab+a}, {2ab+2a}}

群论

同构

G ≈ H 表示 G 同构于 H

Q / {1, −1} ≈ V,
其中 Q 是四元数群 V 是 克莱因四群.

同构于

群论

正比

G H 表示 G 正比于 H

Q V,则 Q=KV

正比于

所有领域

 

<think>嗯,用户问的是如何在编程中定义变量。首先,我需要综合之前提供的引用内容,看看各个语言中的变量定义方式。引用1提到Bash中定义变量很简单,直接变量名=值,不需要声明,而且注意赋值符号前后不能有空格。引用2讨论C语言在头文件中定义变量的问题,指出全局变量在多个源文件包含时会引发重定义错误,而静态变量则每个文件独立。引用3讲Shell脚本中的环境变量,用export导出,环境变量在子Shell中有效。引用4是PHP的静态变量用作缓存,引用5则关于C语言多文件全局变量重定义的链接规则。 用户的问题比较广泛,可能对编程不太熟悉,需要分语言来回答,这样更清晰。应该先解释通用的变量定义概念,然后分语言举例,比如Bash、C、Python、PHP等,这样用户能对比不同语言的差异。要注意用户可能想了解不同语言中的变量定义规则和注意事项,比如作用域、声明方式等。 还要确保按照系统指令,行内数学公式用$...$,不过这里可能用不上数学公式。独立公式需要单独成段,但变量定义通常不需要公式,所以可能不需要用。但如果有例子中的代码块,需要用正确的格式,比如Python代码用三个反引号包裹。 需要检查每个引用是否适用,比如引用2提到C语言头文件定义变量的陷阱,引用5关于全局变量重定义,这些在解释C语言变量定义时要提到。引用1和3关于Shell变量,引用4关于PHP静态变量,这些都要在相应部分提到。 另外,用户可能想知道变量定义的基本规则,比如命名规范、作用域、生命周期等,需要涵盖这些方面。同时,生成相关问题时要考虑用户可能的后续疑问,比如变量作用域、不同语言的区别、常见错误等。 总结回答结构:先总述变量定义的基本要素,然后分语言详述,最后注意事项和常见问题。这样结构清晰,用户容易理解。确保引用正确,比如Bash变量定义引用1,C语言引用2和5,Shell环境变量引用3,PHP引用4。同时,生成的三个问题要针对变量定义的不同方面,比如命名规则、作用域、多文件处理。</think>在编程中定义变量需要根据具体语言语法进行操作,主要包含三个要素:变量名称、赋值符号和初始值。以下是常见编程语言的实现方式及注意事项: ### 一、变量定义基础 1. **命名规范** - 变量名称由字母、数字和下划线组成,不能以数字开头(例如:`$count_1$`) - 需遵循语言特定保留字限制(如C语言中`int`不可作为变量名) 2. **作用域与生命周期** - 全局变量:整个程序可见(需避免多文件重复定义问题[^5]) - 局部变量:仅在定义的作用域内有效 --- ### 二、不同语言实现示例 1. **Bash/Shell脚本** 直接赋值且**等号两侧无空格**,通过`export`声明环境变量(子进程可继承)[^1][^3] ```bash name="user" # 用户自定义变量 export PATH=$PATH:/new_path # 环境变量 ``` 2. **C语言** - 全局变量需在头文件中**声明**(`extern`),在源文件中**定义** ```c // header.h extern int global_var; // 声明 // main.c int global_var = 10; // 定义(避免在头文件中直接定义[^2]) ``` - 静态变量通过`static`限制作用域 ```c static int local_var = 5; // 仅在当前文件有效 ``` 3. **Python** 动态类型语言,直接赋值即定义 ```python counter = 0 # 整型变量 message = "Hello" # 字符串变量 ``` 4. **PHP** 使用`$`符号前缀,静态变量通过`static`保留计算结果[^4] ```php $username = "admin"; // 普通变量 function calculate() { static $cache = 0; // 静态变量作为缓存 } ``` --- ### 三、关键注意事项 1. **强类型语言需声明类型** ```java int age = 25; // Java/C/C++ String name = "Alice"; ``` 2. **避免多文件重复定义** C语言中全局变量若在头文件中定义,会导致链接错误[^2][^5] 3. **作用域控制** - JavaScript使用`let`/`const`限制块级作用域 ```javascript let temp = 100; // 块级作用域变量 const PI = 3.14159; // 常量 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值