两种基于划分的聚类算法:K-means和K-medoids

本文探讨了基于划分的聚类算法,重点比较了K-means和K-medoids,讲述了如何通过计算均值和medoid作为代表点进行迭代。了解这两种方法如何确定类别,并介绍了其他相关算法如k-modes和kernelk-means。
摘要由CSDN通过智能技术生成

两种基于划分的聚类算法:K-means和K-medoids

【正所谓 “物以类聚,人以群分”,聚类聚类,就是把具有相同特性的“东西”聚为一类】

基于划分的聚类算法—思想

假设有一堆数据点(很多个),目的是要将这些点分为K个类(这个K你得事先知道)。
主要思想如下:
1:初始K个点作为初始的“代表点”。
2:计算那一堆散点到这个K个点的距离(也可以是其他度量方式),离K个点中的哪一个近,就把这个数据归到哪一类。至此,可以形成K个类。
3:重新计算“代表点”。
4:重复以上2到3的步骤,直至收敛(收敛的判断方式很多,比如代表点不在变化,损失函数不再变化等)

基于划分的聚类算法—K-means和K-medoids

K-means和K-medodis的不同之处主要就在于第3步不一样,计算“代表点”的方式不一样。

K-means聚类算法

该算法主要是通过求解对应类中所有点的Mean作为“代表点”,并参与迭代。
Mean的求法:

M e a n = 所 有 点 加 起 来 / 对 应 类 中 点 的 个 数 Mean={所有点加起来}/{对应类中点的个数} Mean=/

K-means聚类算法

该算法主要是通过求解对应类中所有点的Medoid作为“代表点”,并参与迭代。
Medoid具有的性质是:该Medoid到对应类中所有点的距离之和最小。具体的求解方法:

  1. 计算对应类所有点其他所有点的距离之和(强调一下是在对应类中,不要算到别人的类中去了)。
  2. 找出这个拥有最小距离之和的点,没错它就是你要找的Medoid

其他的一些基于划分的聚类算法

主要有:k-modes、k-medians、kernel k-means、fuzzy c-means …

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值