准滑动模态的滑模控制
【问题】:大家都知道,在理想的情况下,若使用 s g n ( ⋅ ) sgn(\cdot) sgn(⋅),则能在切换面上形成理想的滑动模态,这是一种光滑的运动,渐进趋近与原点。但是呢,在实际情况中,滑动模态呈现抖动形式,现实中的滑动模态控制均伴随有抖振。
【办法】:准滑动模态的滑模控制。
【准滑动模态】:所谓准滑动模态,是指系统的运动轨迹被限制在理想滑动模态的某一 Δ \Delta Δ领域内的模态。从相轨迹方面来说,具有理想滑动模态的控制是使一定范围内的状态点均被吸引至切换面。而准滑动模态控制则是使一定范围内的状态点均被吸引至切换面的某一 Δ \Delta Δ领域内,通常称此 Δ \Delta Δ领域为滑动模态切换面的边界层 [1]。
常用的准滑动模态控制
(1)用饱和函数
s
a
t
(
s
)
sat(s)
sat(s)代替
s
g
n
(
s
)
sgn(s)
sgn(s)
s
a
t
(
s
)
=
{
1
s
>
Δ
k
s
∣
s
∣
≤
Δ
k
=
1
Δ
−
1
s
<
−
Δ
.
sat(s)=\begin{cases} 1 & s>\Delta\\ ks & |s|\leq\Delta\quad \quad k=\frac{1}{\Delta}\\ -1& s<-\Delta. \end{cases}
sat(s)=⎩⎪⎨⎪⎧1ks−1s>Δ∣s∣≤Δk=Δ1s<−Δ.
这里的
Δ
\Delta
Δ是一个设计的参数。一般设计的比较小。
(2)用连续函数
θ
(
s
)
\theta(s)
θ(s)代替
s
g
n
(
s
)
sgn(s)
sgn(s)
θ
(
s
)
=
s
∣
s
∣
+
Δ
\theta(s)=\frac{s}{|s|+\Delta}
θ(s)=∣s∣+Δs
这里的
Δ
\Delta
Δ是一个设计的参数。一般设计的比较小。
【参考文献】
[1]: 刘金琨,滑模变结构控制MATLAB仿真(第三版)基本理论与设计方方法,第56页。