准滑动模态的滑模控制(几种替代sgn(⋅)的函数)

本文介绍了滑模控制在实际应用中遇到的抖振问题,并提出了准滑动模态控制的概念。准滑动模态控制通过引入饱和函数或连续函数来平滑切换过程,减少抖振现象。具体方法包括使用饱和函数sat(s)替代sgn(s),以及采用连续函数θ(s)来代替阶跃函数。这两种方法通过调整参数Δ来控制边界层,实现状态点向切换面的平稳趋近。这种方法对于实际控制系统的设计具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

准滑动模态的滑模控制

【问题】:大家都知道,在理想的情况下,若使用 s g n ( ⋅ ) sgn(\cdot) sgn(),则能在切换面上形成理想的滑动模态,这是一种光滑的运动,渐进趋近与原点。但是呢,在实际情况中,滑动模态呈现抖动形式,现实中的滑动模态控制均伴随有抖振。

【办法】:准滑动模态的滑模控制。

【准滑动模态】:所谓准滑动模态,是指系统的运动轨迹被限制在理想滑动模态的某一 Δ \Delta Δ领域内的模态。从相轨迹方面来说,具有理想滑动模态的控制是使一定范围内的状态点均被吸引至切换面。而准滑动模态控制则是使一定范围内的状态点均被吸引至切换面的某一 Δ \Delta Δ领域内,通常称此 Δ \Delta Δ领域为滑动模态切换面的边界层 [1]。

常用的准滑动模态控制

(1)用饱和函数 s a t ( s ) sat(s) sat(s)代替 s g n ( s ) sgn(s) sgn(s)
s a t ( s ) = { 1 s > Δ k s ∣ s ∣ ≤ Δ k = 1 Δ − 1 s < − Δ . sat(s)=\begin{cases} 1 & s>\Delta\\ ks & |s|\leq\Delta\quad \quad k=\frac{1}{\Delta}\\ -1& s<-\Delta. \end{cases} sat(s)=1ks1s>ΔsΔk=Δ1s<Δ.
这里的 Δ \Delta Δ是一个设计的参数。一般设计的比较小。

(2)用连续函数 θ ( s ) \theta(s) θ(s)代替 s g n ( s ) sgn(s) sgn(s)
θ ( s ) = s ∣ s ∣ + Δ \theta(s)=\frac{s}{|s|+\Delta} θ(s)=s+Δs
这里的 Δ \Delta Δ是一个设计的参数。一般设计的比较小。

【参考文献】
[1]: 刘金琨,滑模变结构控制MATLAB仿真(第三版)基本理论与设计方方法,第56页。

### 模糊滑模控制的数学原理 #### 定义与背景 模糊滑模控制融合了模糊逻辑系统的灵活性以及滑模控制的强大鲁棒性和快速响应能力。通过引入模糊推理机制来处理不确定性,可以有效减少传统滑模控制中存在的抖振现象。 #### 基本概念 在构建模糊滑模控制系统时,主要涉及两个方面的工作: - **模糊规则库的设计**:基于专家经验和系统行为模式建立一系列IF-THEN形式的模糊规则; - **反模糊化过程**:将模糊集合映射回具体的数值输出,用于实际控制操作[^1]。 对于滑模部分而言,则需定义合适的切换函数\( s(t)=C^{T}e(t)\),其中\( e(t) \)表示跟踪误差向量,矩阵 \( C \) 的选取应满足一定的条件以确保所期望的滑动模态存在且可达。一旦进入滑动模态后,系统的动态特性由预设的滑模面决定,此时即使面对外部干扰或内部参数波动也能维持稳定性能[^2]。 #### 控制律设计 为了使受控对象能够沿预定路径趋近并停留在理想工作点附近,在此过程中通常采用如下形式作为总的控制输入\[ u=u_{eq}+u_{sw}\]: - 平衡项 \( u_{eq}(t)=-K\cdot sgn(s(t))-\dot{s}(t)/|s(t)|^\alpha \),旨在抵消非线性因素影响的同时引导状态变量趋向于零; ```matlab function ueq = computeEquilibriumControl(s, alpha, K) % 计算平衡控制分量 if abs(s) > eps ueq = -K * sign(s) - diff_s ./ (abs(s).^alpha); else ueq = 0; end end ``` - 补偿项 \( u_{sw}=f(x,\hat{\theta}) \),借助模糊推理系统在线调整增益系数或其他关键参数,进而削弱因模型失配带来的负面影响。 ```matlab function usw = fuzzyCompensation(x, theta_hat) % 使用模糊逻辑计算补偿控制信号 f = evaluateFuzzySystem(x, theta_hat); % 调用模糊系统评估函数 usw = f; end ``` 这种组合方式不仅继承了各自的优势特点,而且能够在一定程度上克服单一方法存在的局限性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值