聚类算法的分类

聚类算法通常可以分为两大类: 基于密度的聚类算法和基于划分的聚类算法。

基于密度的聚类算法:

  • DBSCAN: 基于密度的聚类算法。它可以找到任意形状的聚类,但是需要指定两个超参数:半径 eps 和最少样本数 minPts。
  • OPTICS: 一种改进的 DBSCAN 算法,它可以输出数据对象的密度可达性图,从而方便我们选择合适的 eps 值。

基于划分的聚类算法:

  • K-Means: 最常用的基于划分的聚类算法。它通过不断地重新划分数据对象来找到聚类中心。它需要指定聚类的数目 k。
  • Hierarchical Clustering: 层次聚类算法。它可以将数据对象通过层层划分的方式形成树状层次结构。它可以通过指定聚类的数目 k 来控制聚类的数目,也可以通过画 dendrogram (树状图) 来找到合适的聚类数目。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值