xsin(1/x)和sin(xsin(1/x))“不等价”这个事,完全不重要,别再消耗精力看这玩意了

先说一个事实,我亲自找遍了从1987年到2024年考研的全部真题,包括数1,2,3包括早年的试卷4和试卷5。完全涉及不到这个知识点。真题从未考过,我不理解为什么它会引起非常广泛的讨论,而且一些老师或者up主反复讲解这个问题的过程当中也说不到点子上,浮于表面。对此知识点不感兴趣的小伙伴可以不看了,毕竟考研数学从未考过这个点。如果你对此很感兴趣,我会详细地展示这个问题的本质。

x sin ⁡ ( 1 / x ) x\sin (1/x) xsin(1/x) sin ⁡ ( x sin ⁡ ( 1 / x ) ) \sin(x\sin (1/x)) sin(xsin(1/x))真的不等价吗?

那些说它们不等价的人是如何描述的呢?
注意到 l i m x → 0 sin ⁡ ( x sin ⁡ ( 1 x ) ) x sin ⁡ ( 1 x ) \mathop{\rm lim}\limits_{x \to 0} \frac{\sin \left( x\sin \left( \frac{1}{x} \right) \right)}{x\sin \left( \frac{1}{x} \right)} x0limxsin(x1)sin(xsin(x1))不存在,所以分子和分母不等价。
为什么会这样呢?因为我们看同济第七版高数书当中对于极限的定义:

同济第7版本高数上第28页

原来是因为这个函数 f ( x ) = sin ⁡ ( x sin ⁡ ( 1 x ) ) x sin ⁡ ( 1 x ) f(x)=\frac{\sin \left( x\sin \left( \frac{1}{x} \right) \right)}{x\sin \left( \frac{1}{x} \right)} f(x)=xsin(x1)sin(xsin(x1)) 无法保证在点 x = 0 x=0 x=0的任何一个去心邻域内处处有定义(也就是说不满足极限定义的前提),然后就说这个极限不等于1,此极限是不存在的,因此说分子和分母不等价。看似有道理,实际没搞清楚问题的本质。

这个极限真的应该描述成“不存在”吗?

我们看看什么极限不存在,比如 l i m x → 0 1 x \mathop{\rm lim}\limits_{x \to 0} \frac{1}{x} x0limx1 l i m x → 0 e 1 x \mathop{\rm lim}\limits_{x \to 0} \mathrm{e}^{\frac{1}{x}} x0limex1都是极限不存在,一个是极限不存在但无穷大,另一个是极限不存在也不是无穷大。

然而 f ( x ) = sin ⁡ ( x sin ⁡ ( 1 x ) ) x sin ⁡ ( 1 x ) f(x)=\frac{\sin \left( x\sin \left( \frac{1}{x} \right) \right)}{x\sin \left( \frac{1}{x} \right)} f(x)=xsin(x1)sin(xsin(x1))是无法保证在点 x = 0 x=0 x=0的任何一个去心邻域内处处有定义,导致了后面的“求极限”的操作完全无法实施,所以此极限只能叫作无定义,无定义,无定义!而不是不存在,不存在指的是可以尝试去求一下,求了之后发现不存在,而不是连求的资格都没有的时候就说不存在。

好比小帅45岁了,然后和别人说我今年考公务员没考上,你那叫没考上??你压根就报不上名好吧!超龄了啊,报都报不上。

再举一个例子,好比声称x的0.5阶导数不存在,这说法在考研数学内就有问题,没定义非整数阶导数啊,所以在考研数学范围内正确的说法是x的0.5阶导数没有定义,而不是说不存在。事实上对于分数阶导数是有定义的,相应地还有分数阶积分,并且还有实际的意义,有实际的应用,当然这都超出了考研的范围。

好比考研数学真题不会问你x的1.5阶导数等于多少一样,考研数学也不会考一个无定义的极限的题的。

抛开“不存在”和“无定义”的区别不谈,这个极限就真的不是1吗?

实际上,我们看菲赫金哥尔茨《微积分学教程(第8版第1册)》中是怎么对极限定义的(看不懂没关系,考研非数学系不考的):
《微积分学教程(第8版第1册)》第92页
从这个极限的定义来看, l i m x → 0 sin ⁡ ( x sin ⁡ ( 1 x ) ) x sin ⁡ ( 1 x ) \mathop{\rm lim}\limits_{x \to 0} \frac{\sin \left( x\sin \left( \frac{1}{x} \right) \right)}{x\sin \left( \frac{1}{x} \right)} x0limxsin(x1)sin(xsin(x1))存在并且等于1,而且很多数学分析的教材也采用这种定义。

简单地觉得这个极限等于1是属于看山是山看水是水的第一层。那些好像知道了什么重大发现似的说这个极限不存在然后让大家注意,属于看山不是山看水不是水的第二层。你如果看到这,并且理解了这个极限在更完善的定义下可以求并且极限就是1,就达到了属于看山还是山看水还是水的第三层境界。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新威考研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值