基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理(matlab代码)

目录

1 主要内容

主从博弈模型

基于元模型的均衡算法流程图

2 部分代码

3 程序结果

4 下载链接


主要内容

该程序复现《基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理》模型,建立运营商和多虚拟电厂的一主多从博弈模型,研究运营商动态定价行为和虚拟电厂能量管理模型,模型为双层,首先下层模型中,构建了多个虚拟电厂的联合调度模型,以每个虚拟电厂的运行成本最低为优化目标,而上层为领导者模型,主要是优化市场运营商的电价,包括售电电价和购电电价的优化,从而构成了主从博弈模型,在求解的过程中,上层采用的是粒子群算法,而下层则是调用CPLEX求解器进行求解,由于模型整体规模较大,故采用了元模型算法加速求解。程序采用matlab+cplex求解,注释清楚,运行可靠,方便学习参考!

  • 主从博弈模型

说明:将 DSO 和 VPP 的拥有者视为博弈的参与者。其中,DSO充当领导者,汇总各 VPP 上报的购售电量,结合上网电价和电网电价,考虑VPP 的价格响应行为,以最大化自身收益为目标为各VPP 制定交易电价;各VPP 充当跟随者,接收 DSO 制定的交易电价,合理安排内部各DER 出力,以最小化运行成本为目标制定与运营商交易的电量。领导者与跟随者之间顺次博弈,构成 Stackelberg 博弈,各 VPP 之间同时决策,形成非合作博弈。

  • 基于元模型的均衡算法流程图

该文章通过引入元模型提高系统运算速度作为一大亮点,这给我们创新提供了一个很好的思路,大家可以关注一下数学优化理论方面的新方法,将其应用于自建模型中,成为一个重要创新点。

部分代码

%% 算法总参数设定
Number=5; 
%% 根据超拉丁采样(LHS)生成Number个初始样本点
lambda_Wb=[0.40*ones(1,7),0.75*ones(1,4),1.20*ones(1,3),0.75*ones(1,4),1.20*ones(1,4),0.40*ones(1,2)];
% % lambda_Ws = 0.4*ones(1,24);
lambda_Ws=[0*ones(1,7),0.35*ones(1,4),0.5*ones(1,3),0.35*ones(1,4),0.5*ones(1,4),0*ones(1,2)];
​
%通过LHS生成样本点
for t=1:24
    temp=lhsdesign(Number,1); %生成每个时段的抽样中间辅助矩阵,为1维分Number层的超拉丁抽样结果
    lambda_DAs(:,t)=temp.*(lambda_Wb(t)-lambda_Ws(t))+lambda_Ws(t); %生成运营商制定的售电价格
    lambda_DAb(:,t)=lambda_DAs(:,t)+rand(Number,1).*(lambda_Wb(t)-lambda_DAs(:,t)); %生成运营商制定的购电价格(购电价应大于售电价所以这么写)
end
disp('超拉丁采样(LHS)生成Number个初始样本点,结束!')
%% 通过生成的样本点调用下层博弈模型,计算出每个VPP的交易电量来构成样本数据集
for i=1:Number
    [P_VPP_s1,P_VPP_b1,~]=Fun_VPP1(lambda_DAb(i,:),lambda_DAs(i,:));
    [P_VPP_s2,P_VPP_b2,~]=Fun_VPP2(lambda_DAb(i,:),lambda_DAs(i,:));
    [P_VPP_s3,P_VPP_b3,~]=Fun_VPP3(lambda_DAb(i,:),lambda_DAs(i,:));
    P_VPP_s(i,:)=[P_VPP_s1,P_VPP_s2,P_VPP_s3];
    P_VPP_b(i,:)=[P_VPP_b1,P_VPP_b2,P_VPP_b3];
end
disp('样本数据集构成,结束!')
%% 修正Kriging模型,计算每组样本点对应的目标函数值
for i=1:Number
    [C_DSO(i,1)]=Fun_DSO(lambda_DAs(i,:),lambda_DAb(i,:),P_VPP_b(i,:),P_VPP_s(i,:));
end
disp('计算每组样本点对应的目标函数值,结束!')
%% 关键区域划分,并计算各个区域的最优值
l=1; %划分的区域的编号,初始化为1(编号越小,说明该区域包含最优解的概率越大) 
S=C_DSO; %设定S为所有电价样本对应的上层目标函数值集
for i=1:Number
    lambda_DA(i,:)=[lambda_DAs(i,:),lambda_DAb(i,:)]; %将售卖电价统一放入lambda_DA中存储
end
X=lambda_DA; %设定X为所有电价样本点集
SL=lambda_DA; %后续计算半径r中用于生成电价上下边界值的辅助变量
k_max=5; %设定均衡算法的最大迭代次数
[Max_C_DSO,ind]=max(C_DSO); %寻找区域1中最大的上层目标函数值和对应的电价样本点集编号
y(1).S=[Max_C_DSO]; %给y(l)的S赋予当前找到的上层目标函数值
y(l).X=lambda_DA(ind,:); %给y(1)的X赋予当前找到的最优电价样本
S(ind)=[]; %将S的集合中删去此时的区域1的最优解的值
SL(ind,:)=[];
lambda_DA0=lambda_DA(ind,:); %设定区域l的中心电价的值
while 1
    if isempty(S) %判断S是否为非空集(也就是关键区域完成划分)
        break;
    end
    eval(['y',num2str(l),'.S=[];']); 
    eval(['y',num2str(l),'.X=[];']);
    k=1; %设定初始迭代次数
    while k<=k_max
        if isempty(S) %判断S是否为非空集(也就是关键区域完成划分)
            break;
        else
            lambda_DA_max=max(sqrt(sum(SL.^2,2))); %计算得到电价的上边界值
            lambda_DA_min=min(sqrt(sum(SL.^2,2))); %计算得到电价的下边界值
            r=norm(lambda_DA_max-lambda_DA_min)/3*(k_max-k+1)/k_max; %计算得到半径r
            ind=Fun_R(lambda_DA0,SL,r); %寻找距离中心点小于等于r的点的编号
            if isempty(ind) %确认寻找到的点集非空
                break;
            else
                eval(['y',num2str(l),'.S=[y',num2str(l),'.S;S(ind)];']);
                eval(['y',num2str(l),'.X=[y',num2str(l),'.X;SL(ind,:)];']);
                S(ind)=[]; %将S的集合中删去此时距离小于r的值
                SL(ind,:)=[]; %将SL的集合中删去此时距离小于r的值
                k=k+1; %均衡算法迭代次数加一
            end
        end
    end

程序结果

4 下载链接

见下方联系方式

### 基于主从博弈虚拟电厂动态定价与优化调度 在电力系统中,为了提高能源利用效率并降低成本,研究者们提出了种方法来解决复杂的能量管理定价问题。一种有效的方法是通过构建主从博弈模型来进行虚拟电厂(MVPPs)能量管理动态定价。 #### 主从博弈模型概述 该模型分为两层结构: - **下层模型**:涉及虚拟电厂(VPP),每个VPP的目标是最小化自身的运营成本。这些VPP共同参与由市场运营商主导的竞争环境,形成一个代理系统的框架[^1]。 - **上层模型**:作为领导者的角色,负责设定最优的售电价电价格策略,以最大化收益或达到其他战略目的。此部分通常采用启发式算法如粒子群优化(PSO)。 对于具体的求解过程而言,考虑到实际应用中的复杂性计算量需求,往往会选择高效的数值求解工具组合方式——即使用MATLAB编写主要逻辑流程,并借助IBM ILOG CPLEX这类专业的线性规划(LP)/混合整数规划(MIP)求解库处理底层的具体运算任务。 #### MATLAB实现思路 以下是简化版的伪代码表示如何在一个简单的场景下实现上述提到的概念: ```matlab % 初始化参数设置 num_vpps = ...; % 虚拟发电厂数目 price_range = [...]; % 定价范围向量 [min_price, max_price] % 上层 PSO 参数初始化 (针对运营商) options.pso = optimset('Display', 'iter'); swarm_size = 50; max_iter = 200; % 下层 VPP 成本函数定义 vpp_cost_function = @(prices)... ; % 输入为各时段的价格序列 for iter = 1:max_iter % 更新粒子位置速度等操作... current_prices = get_current_prices(swarm); % 获取当前迭代下的电价方案 for vpp_idx = 1:num_vpps % 对每一个VPP调用CPLEX求解其最小化成本问题 optimal_power_dispatch(vpp_idx) = cplex_solve(current_prices, @vpp_cost_function); end end function result = cplex_solve(prices, cost_func_handle) % 这里省略具体细节,实际上会涉及到创建LP/MILP模型并通过CPLEX API传递给求解器执行 end ``` 这段代码展示了基本的工作流,其中`cplex_solve()`代表了调用外部求解器的过程,而整个循环体模拟了PSO更新机制的一部分。需要注意的是这只是一个非常抽象化的版本;真实的应用可能会更加复杂,包括更的约束条件以及更精细的成本建模等方面的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电力程序小学童

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值