clear all;
close all;
clc;
I=imread('ren.jpg');%%被识别图片存储路径
%%%%%%%%%%%%%%%%%算法封装,可以看作一个黑盒子%%%%%%%%%%%%%%%%
O=rgb2ntsc(I);%%把rbg图像转为ntsc色域
% figure;
% subplot(131);imshow(O(:,:,1));
% subplot(132);imshow(O(:,:,2));
% subplot(133);imshow(O(:,:,3));
G=O(:,:,2);%通过观察发现人脸部分的像素集中在第二个维度,因此取第二个维度的数据进行人脸识别
% figure;imshow(G,[]);
[m,n]=size(G);%求出数据的大小,m代表行数,n代表列数
threh_low=0.09;
threh_high=0.12;%根据人脸部分的像素大小选择阈值,这里的两个阈值可以根据需要设定
U=zeros(m,n);%预分配数组,利用设定的阈值对图像进行二值化
for i=1:1:m
for j=1:1:n
if G(i,j)>=threh_low&&G(i,j)<=threh_high
U(i,j)=1;
end
end
end
% figure;imshow(U,[]);
% G_U=U.*G;
% figure;imshow(G_U);
U_c=bwmorph(U,'erode');%%利用腐蚀操作删除分叉线条,保留像素聚集的区域
% figure;imshow(U_c,[]);
%%%观察图像可以发现,人脸的像素在跟周围的环境有明显的区别,因此下面利用连通区域的知识计算图像中的连通区域
%%%如果连通区域的大小符合人脸的特征,也就是长宽比符合人脸的比列,则认为此区域为人脸
L=bwlabel(U_c);%标记连通区域
% figure;imshow(L,[]);
B=regionprops(L,'all');%计算连通区域的性质
Se=[B.Area];%取每个连通区域的面积参数
num=length(Se);%求有多少个连通区域
%%%下面计算每个连通区域的特征,看看是否是人脸,从面积最大的连通区域开始,如果找到就停止循环。
h_w_low=0.5;
h_w_high=3;
for j=1:1:num
Sm=max(Se);%找出面积的最大值
B1=bwareaopen(U_c,Sm);%去除图像中小于当前连通区域面积的区域
% figure;imshow(B1);
sum_col=sum(B1,1);%对列求和
sum_row=sum(B1,2);%对行求和
%找到该连通区域的左边的坐标
for i=1:1:n
if(sum_col(1,i)~=0)
col_left=i;
break;
end
end
%找到该连通区域的右边的坐标
for i=n:-1:1
if(sum_col(1,i)~=0)
col_right=i;
break;
end
end
%找到该连通区域的上边的坐标
for i=1:1:m
if(sum_row(i,1)~=0)
row_up=i;
break;
end
end
%找到该连通区域的下边的坐标
for i=m:-1:1
if(sum_row(i,1)~=0)
row_down=i;
break;
end
end
w=abs(col_right-col_left);%求矩形区域的长度
h=abs(row_down-row_up);%求举行区域的高度
if h>h_w_low*w&&h_w_high<3*w%h/w在一定范围内就确定是人脸
% I1=imcrop(B1,[col_left row_up w h]);%裁剪脸部区域
% [n1, m1]=size(I1);
% figure;imshow(I1);
%在原图上用矩形框框出面部区域。
figure;
imshow(I);
hold on;
h1=line([col_left col_right],[row_up,row_up],'Color',[1 0 0],'LineWidth',3);
h2=line([col_left col_right],[row_down,row_down],'Color',[1 0 0],'LineWidth',3);
h3=line([col_left col_left],[row_up,row_down],'Color',[1 0 0],'LineWidth',3);
h4=line([col_right col_right],[row_up,row_down],'Color',[1 0 0],'LineWidth',3);
break;
end
end
05-27