LeetCode300——Longest Increasing Subsequence

本文详细介绍了使用动态规划方法解决最长上升子序列(LIS)问题的算法,包括朴素方法和一种新颖的改进方法。首先,通过动归方程定义了以某个元素结尾的最长上升子序列长度,并提供了具体的实现代码。随后,提出了一种利用排序后的序列与原序列进行最长公共子序列(LCS)运算的高效方法,进一步优化了解决过程。
摘要由CSDN通过智能技术生成

LeetCode300——Longest Increasing Subsequence

题意:

最长上升子串,LIS问题,经典的动态规划问题。据说有用到二分的方法,这个还没有仔细研究,先说说朴素的方法:

动归方程可以如下描述:

dp[i] 表示以 nums[i]结尾的最长上升子串的长度。

为了得到dp[i],我们首先要找出最大的dp[j]   其中 j 的范围是 [0,i-1]

当nums[i] > nums[j]时,dp[i]=上述最大值加1。


代码:

class Solution {
public:
	int lengthOfLIS(vector<int>& nums) {
		if (nums.size() == 0 || nums.size() == 1)
			return nums.size();
		vector< int >dp(nums.size());//init
		int result=0;
		dp[0] = 1;
		for (int i = 1; i < nums.size(); i++)
		{
			int maxNum = 0;
			for (int j = 0; j < i; j++)
			{
				if (dp[j]>maxNum&&nums[j]<nums[i])
				{
					maxNum = dp[j];
				}
			}
			dp[i] = maxNum+1;
			result = dp[i] > result ? dp[i] : result;
		}
		return result;
	}
};

----------------------------------2015年11月15日更新---------------------------------

看了July的算法视频,发现了一种新的方法。。。

先对原序列进行排序生成新的有序序列  nums2

再对nums和nums2做LCS(最长公共子序列)运算。

之后测试后会补齐代码。


----------------------------------2017年2月5日更新---------------------------------

时隔一年多,学会了用LCS解决LIS的算法,不过在LeetCode上出现Memory Limit错误

方法很简单,就是先将原序列排序,去重,在对这两个序列做LCS算法。

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        vector<int>copied_nums(nums.begin(),nums.end());
        sort(copied_nums.begin(),copied_nums.end());
        copied_nums.erase(unique(copied_nums.begin(),copied_nums.end()),copied_nums.end());
        int m=nums.size();
        int n=copied_nums.size();
        vector<vector<int>>dp(m+1,vector<int>(n+1));
        for(int i=0;i<m;++i)
        {
            for(int j=0;j<n;++j)
            {
                if(nums[i]==copied_nums[j])
                {
                    dp[i+1][j+1]=dp[i][j]+1;
                }
                else
                {
                    dp[i+1][j+1]=max(dp[i+1][j],dp[i][j+1]);
                }
            }
        }
        return dp[m][n];
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值