LeetCode300——Longest Increasing Subsequence
题意:
最长上升子串,LIS问题,经典的动态规划问题。据说有用到二分的方法,这个还没有仔细研究,先说说朴素的方法:
动归方程可以如下描述:
dp[i] 表示以 nums[i]结尾的最长上升子串的长度。
为了得到dp[i],我们首先要找出最大的dp[j] 其中 j 的范围是 [0,i-1]
当nums[i] > nums[j]时,dp[i]=上述最大值加1。
代码:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if (nums.size() == 0 || nums.size() == 1)
return nums.size();
vector< int >dp(nums.size());//init
int result=0;
dp[0] = 1;
for (int i = 1; i < nums.size(); i++)
{
int maxNum = 0;
for (int j = 0; j < i; j++)
{
if (dp[j]>maxNum&&nums[j]<nums[i])
{
maxNum = dp[j];
}
}
dp[i] = maxNum+1;
result = dp[i] > result ? dp[i] : result;
}
return result;
}
};
----------------------------------2015年11月15日更新---------------------------------
看了July的算法视频,发现了一种新的方法。。。
先对原序列进行排序生成新的有序序列 nums2
再对nums和nums2做LCS(最长公共子序列)运算。
之后测试后会补齐代码。
----------------------------------2017年2月5日更新---------------------------------
时隔一年多,学会了用LCS解决LIS的算法,不过在LeetCode上出现Memory Limit错误
方法很简单,就是先将原序列排序,去重,在对这两个序列做LCS算法。
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int>copied_nums(nums.begin(),nums.end());
sort(copied_nums.begin(),copied_nums.end());
copied_nums.erase(unique(copied_nums.begin(),copied_nums.end()),copied_nums.end());
int m=nums.size();
int n=copied_nums.size();
vector<vector<int>>dp(m+1,vector<int>(n+1));
for(int i=0;i<m;++i)
{
for(int j=0;j<n;++j)
{
if(nums[i]==copied_nums[j])
{
dp[i+1][j+1]=dp[i][j]+1;
}
else
{
dp[i+1][j+1]=max(dp[i+1][j],dp[i][j+1]);
}
}
}
return dp[m][n];
}
};