LeetCode164—Maximum Gap

本文介绍了一种算法,用于找出未排序数组中排序后相邻元素的最大间隔。通过使用STL的排序功能实现,并讨论了如何达到线性时间和空间复杂度的要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题

原题链接

Given an unsorted array, find the maximum difference between the successive elements in its sorted form.

Try to solve it in linear time/space.

Return 0 if the array contains less than 2 elements.

You may assume all elements in the array are non-negative integers and fit in the 32-bit signed integer range.

分析

其实就是先排序,再找连续两个元素差的最大值,题目要求线性的时间和空间复杂度,常见的这种类型的算法有计数排序,基数排序,桶排序。。这里偷了个懒直接STL的sort了。

class Solution {
public:
    int maximumGap(vector<int>& nums) {
        if(nums.size()<2)
            return 0;
        sort(nums.begin(),nums.end());
        int res=0;
        for(int i=0;i<nums.size()-1;++i)
        {
            res=max(res,nums[i+1]-nums[i]);
        }
        return res;
    }
};
题目描述: 给定一个无序的数组 nums,返回数组在排序之后,相邻元素之间最大的差值。如果数组元素个数小于 2,则返回 0。 要求: 你必须编写一个在「线性时间」内运行并使用「线性额外空间」的算法。 示例: 输入: [3,6,9,1] 输出: 3 解释: 排序后的数组是 [1,3,6,9],其中相邻元素 (3,6) 和 (6,9) 之间都存在 3 的差值。 解题思路: 要求线性时间和空间,可以想到桶排序。首先遍历一遍数组,找到最大值和最小值,确定桶的大小和数量。将元素按照一定的规则放入桶中,然后在桶内寻找相邻元素之间的最大差值。 由于题目要求相邻元素之间的最大差值,因此可以将桶的大小设为 max(1, (max-min)/(n-1)),其中 n 为数组的长度,这样可以保证桶内相邻元素之间的差值不会超过桶的大小。 放入桶中的规则可以是:假设桶的数量为 n,那么第 i 个元素所在的桶的编号为 (num[i]-min) * n / (max-min),这样就可以保证相邻元素在同一个桶中,而不同的桶之间一定存在空桶。 放入桶中后,从左到右依次遍历桶,用当前桶的最小值减去前一个桶的最大值,得到相邻元素之间的差值,取最大值即可。 Python代码实现: ```python class Solution: def maximumGap(self, nums: List[int]) -> int: n = len(nums) if n < 2: return 0 # 找到最大值和最小值 max_num, min_num = max(nums), min(nums) # 计算桶的大小和数量 bucket_size = max(1, (max_num - min_num) // (n - 1)) bucket_num = (max_num - min_num) // bucket_size + 1 # 初始化桶 bucket = [[float('inf'), float('-inf')] for _ in range(bucket_num)] for num in nums: # 计算元素所在的桶的编号 idx = (num - min_num) // bucket_size # 更新桶的最大值和最小值 bucket[idx][0] = min(bucket[idx][0], num) bucket[idx][1] = max(bucket[idx][1], num) # 遍历桶,计算相邻元素之间的最大差值 res, pre_max = 0, bucket[0][1] for i in range(1, bucket_num): if bucket[i][0] == float('inf'): continue res = max(res, bucket[i][0] -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值