HBase数据结构及操作原理

数据结构

  1. 命名空间
    命名空间相当于mysql 的database。命名空间中包括了表、权限等信息

  2. Table
    表(相当于mysql中的表),所有的表都是命名空间的成员,即表必属于某个命名空间,如果没有指定,则在 default 默认的命名空间中

  3. RowKey
    与 nosql 数据库们一样,RowKey 是用来检索记录的主键。访问 HBASE table 中的行,只有三种方式:
    通过单个 RowKey 访问
    通过 RowKey 的 range(正则)访问
    全表扫描
    RowKey 行键 (RowKey)可以是任意字符串(最大长度是 64KB,实际应用中长度一般为10-100bytes),在 HBASE 内部,RowKey 保存为字节数组。存储时,数据按照 RowKey 的字典序(byte order)排序存储。设计 RowKey 时,要充分排序存储这个特性,将经常一起读取的行存储放到一起。(位置相关性)

  4. Column Family
    列族:HBASE 表中的每个列,都归属于某个列族。列族是表的 schema 的一部 分(而列不是),必须在使用表之前定义。列名都以列族作为前缀。例如 courses:history,courses:math都属于 courses 这个列族。列都是插入数据时增加的,不同的数据行可能拥有不同的列

  5. Cell
    由{rowkey, column Family:columu, version} 唯一确定的单元。cell 中的数据是没有类型的,全部是字节码形式存贮。

  6. Time Stamp
    HBASE 中通过rowkey和columns确定的为一个存贮单元称为cell。每个 cell都保存 着同一份数据的某个版本。版本通过时间戳来索引。时间戳的类型是 64 位整型。时间戳可以由 HBASE(在数据写入时自动 )赋值,此时时间戳是精确到毫秒 的当前系统时间。时间戳也可以由客户显式赋值。如果应用程序要避免数据版 本冲突,就必须自己生成具有唯一性的时间戳。每个 cell 中,不同版本的数据按照时间倒序排序,即最新的数据排在最前面。为了避免数据存在过多版本造成的的管理 (包括存贮和索引)负担,HBASE 提供 了两种数据版本回收方式。一是保存数据的最后 n 个版本,二是保存最近一段 时间内的版本(比如最近七天)。用户可以针对每个列族进行设置。

基于列的数据存储方式

逻辑存储

逻辑上来看HBase的数据结构和关系型数据库的结构类似,有行有列,仅仅多了列族的概念,如下:
在这里插入图片描述

物理存储

实际上在HBase中数据是基于列族存储的,且列族中的列是数据插入时定义的,如下图逻辑上的一行数据在HBase中按照列拆分成多行进行存储
在这里插入图片描述

  1. HBase中每列存储一行数据(一个Cell),且根据时间戳保留了数据的各个版本。
  2. 如果某一行数据 没有某一列取值,那么HBase不用存储任何数据,也不会占用任何存储空间。

数据读写过程及原理

数据读取流程

在这里插入图片描述

  1. Client 先访问 zookeeper,从 meta 表读取 meta表的位置,然后读取 meta 表中的数据。从meta中读取用户表的 region 信息;
  2. 根据 namespace、表名和 rowkey 在 meta 表中找到对应的 region 信息;
  3. 找到这个 region 对应的 regionserver;
  4. 查找对应的 region;
  5. 先从 MemStore 找数据,和 BlockCache(StoreFile缓存) 里面读取数据,如果BlockCache中没有读到则到StoreFile中读。
  6. MemStore 如果读到了数据,需要和 BlockCache(StoreFile)中的数据做版本对比,取最新版本结果返回给客户端
  7. 从 StoreFile 里面读取的数据,先写入 BlockCache,再返回给客户端。
数据写入流程

在这里插入图片描述

  1. Client 向 HregionServer 发送写请求;
  2. HregionServer 将数据写到 HLog(write ahead log)。为了数据的持久化和恢复;
  3. HregionServer 将数据写到内存(MemStore);
  4. 反馈 Client 写成功。

数据 flush 过程

  1. 当 MemStore 数据达到阈值(默认是 128M,老版本是 64M),将数据刷到硬盘(StoreFile),将内存中的数据删除,同时删除 HLog 中的历史数据;
  2. 并将数据存储到 HDFS 中;每次flush 都会将内存中的数据保存在HDFS上的一个文件中。
  3. 在 HLog 中做标记点。

数据合并过程

  1. 当数据块达到 4 块(HDFS上同一个Region文件达到四个),Hmaster 触发合并操作,Region 将数据块加载到本地,进行合并;
  2. 当合并的数据超过 256M,进行拆分,将拆分后的 Region 分配给不同的 HregionServer管理;
  3. 当HregionServer宕机后,将HregionServer上的hlog拆分,然后分配给不同的HregionServer加载,修改.META.;
  4. 注意:HLog 会同步到 HDFS。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

catch that elf

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值