python手撕代码——多头注意力机制

备注:以前搞的方法比较传统,现在搞卫星图像目标跟踪要用transfomer,最近在学习这方面,为了加深理解,打算手写一个transfomrer,发帖子当作笔记使用,有错误还请指出。

参考帖子1.
参考帖子2
b站还有大佬的视频手撕讲解

1.定义变量,以及main函数调用多头注意力类

假设输入10个单词,我们把他embedding为输入变量X,这个X为max_len乘embedding_dim 的矩阵

embedding_dim = 512                              #每个单词的维度
max_len = 10                                                 #单词数量
num_heads = 8                                             #多头注意力机制的头数
embedded_sentence=X                           #这就是输入,10x512的矩阵

接下来我们定义一个多头注意力的类,main函数如下

attention_layer = MultiHeadAttention(embed_dim=embedding_dim, num_heads=num_heads)
attention_output = attention_layer(embedded_sentence.unsqueeze(0))  # 添加 batch 维度

2.多头注意力类的实现

2.1初始化函数

def __init__(self, embed_dim, num_heads):
        super(MultiHeadAttention, self).__init__()
        self.num_heads = num_heads
        self.embed_dim = embed_dim
        self.head_dim = embed_dim // num_heads     #这一步将输入向量分割为多个注意力头,每个头独立地执行注意力计算
        

        self.query=nn.Linear(embed_dim, embed_dim)
        self.key=nn.Linear(embed_dim, embed_dim)
        self.value=nn.Linear(embed_dim, embed_dim)
        self.out = nn.Linear(embed_dim, embed_dim)
    #nn.Linear(embed_dim, embed_dim)定义一些输入和输出维度都为embed_dim的特征映射,这些特征映射都是设置一个随机初始值,然后通过训练得到。 

2.2 forward函数

2.2.1线性映射

在这里插入图片描述
懒得画图了,借用一下参考帖子1里的图。。。。。

def forward(self,X):
        batch_size, seq_len, embed_dim = X.size()
         #线性映射
        q = self.query(X)
        k = self.key(X)
        v = self.value(X)
        print("q1 shape:", q.shape)
        print("k1 shape:", k.shape)

通过线性映射得到qkv,也就是X* w q w^q wq=q 的过程

这里输出:
q1 shape: torch.Size([1, 10, 512])
k1 shape: torch.Size([1, 10, 512])

2.2.2 多头运算

在这里插入图片描述

图是借用 参考帖子1 的。。。。。。。。。。。。。。。。

接下来分为num_heads个头计算注意力,也就是将矩阵进行变形。
[batch_size, seq_len, embed_dim]维度变为[batch_size, seq_len, num_heads, head_dim]
transpose(1, 2) 调换了 seq_len 和 num_heads 的维度[batch_size, num_heads, seq_len, head_dim]


        q=q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        k = k.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        v = v.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        print("q shape:", q.shape)
        print("k shape:", k.shape)

这里输出
q shape: torch.Size([1, 8, 10, 64])
k shape: torch.Size([1, 8, 10, 64])

2.2.3点积运算获得相关矩阵

        #最核心的,计算点积
        scores = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5)
        attn_weights = torch.nn.functional.softmax(scores, dim=-1)
        attn_output = torch.matmul(attn_weights, v)

1.首先计算 k 的转置,k.transpose(-2, -1) 将 k 的最后两个维度调换
2.然后计算 q 和转置后的 k 的点积,torch.matmul(q, k.transpose(-2, -1)) 结果形状为 。
3.最后除以 sqrt(head_dim) 进行缩放,这是为了稳定梯度,防止点积结果过大。
在这里插入图片描述
这就是scores和 attn_weights矩阵描述的相关性(感谢参考帖子1的图!!!)

     scores和 attn_weights 为:[batch_size, num_heads, seq_len, seq_len]
    v为: [batch_size, num_heads, seq_len, head_dim]
    attn_output为:[batch_size, num_heads, seq_len, head_dim]。

可以看到attn_weights 为相关矩阵也就是输入单词个数的平方,也就是这个矩阵决定了transformer对于计算资源的消耗

2.2.4加权求和以及结果拼接

这一步是加权求和,将每个位置的值向量 v 根据注意力权重进行加权求和。

        attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, embed_dim)
        output = self.out(attn_output)
        return output

下面是完整测试代码。

import torch
import torch.nn as nn
import torch.nn.functional as F

class MultiHeadAttention(nn.Module):

    def __init__(self, embed_dim, num_heads):
        super(MultiHeadAttention, self).__init__()
        self.num_heads = num_heads
        self.embed_dim = embed_dim
        self.head_dim = embed_dim // num_heads
        
        self.query=nn.Linear(embed_dim, embed_dim)
        self.key=nn.Linear(embed_dim, embed_dim)
        self.value=nn.Linear(embed_dim, embed_dim)
        self.out = nn.Linear(embed_dim, embed_dim)
        
        
    def forward(self,X):
        batch_size, seq_len, embed_dim = X.size()
         #线性映射
        q = self.query(X)
        k = self.key(X)
        v = self.value(X)
        print("q1 shape:", q.shape)
        print("k1 shape:", k.shape)
        #[batch_size, seq_len, embed_dim]变为[batch_size, seq_len, num_heads, head_dim]
        #transpose(1, 2) 调换了 seq_len 和 num_heads 的维度[batch_size, num_heads, seq_len, head_dim]
        q=q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        k = k.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        v = v.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        print("q shape:", q.shape)
        print("k shape:", k.shape)

        
        #最核心的,计算点积
        scores = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5)
        attn_weights = torch.nn.functional.softmax(scores, dim=-1)
        
        # 首先计算 k 的转置,k.transpose(-2, -1) 将 k 的最后两个维度调换,形状变为 [batch_size, num_heads,head_dim, seq_len]。
        # 然后计算 q 和转置后的 k 的点积,torch.matmul(q, k.transpose(-2, -1)) 结果形状为 [batch_size, num_heads, seq_len, seq_len]。
        # 最后除以 sqrt(head_dim) 进行缩放,这是为了稳定梯度,防止点积结果过大。
        attn_output = torch.matmul(attn_weights, v)
        #v: [batch_size, num_heads, seq_len, head_dim]结果
        # attn_output为:[batch_size, num_heads, seq_len, head_dim]。
#        这一步是加权求和,将每个位置的值向量 v 根据注意力权重进行加权求和。
        attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, embed_dim)
        output = self.out(attn_output)
        return output
# 简单的词汇表和分词器
def simple_tokenizer(sentence):
    word_to_index = {'this': 1, 'is': 2, 'an': 3, 'example': 4, 'sentence': 5}
    tokens = sentence.lower().split()
    return [word_to_index.get(word, 0) for word in tokens]

# 函数:将句子编码为向量
def encode_sentence(sentence, tokenizer, max_len=10):
    tokens = tokenizer(sentence)
    if len(tokens) > max_len:
        tokens = tokens[:max_len]
    else:
        tokens = tokens + [0] * (max_len - len(tokens))
    return torch.tensor(tokens, dtype=torch.long)

# 示例数据
sentence = "this is an example sentence"
vocab_size = 6  # 假设词汇表大小,包括 0
embedding_dim = 512#输入每个x1的维度
max_len = 10
# 创建一个嵌入层
embedding_layer = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embedding_dim)
# 将句子编码为输入向量X
encoded_sentence = encode_sentence(sentence, simple_tokenizer, max_len)
# 嵌入句子
embedded_sentence = embedding_layer(encoded_sentence)
#上面步骤是构造一个#尺度为max_len乘embedding_dim 的向量


num_heads = 8
# 自定义多头注意力机制
attention_layer = MultiHeadAttention(embed_dim=embedding_dim, num_heads=num_heads)
attention_output = attention_layer(embedded_sentence.unsqueeze(0))  # 添加 batch 维度

print("Encoded Sentence:", encoded_sentence)
print("Embedded Sentence Shape:", embedded_sentence.shape)
print("Attention Output Shape:", attention_output.shape)

pytorch有现成的多头注意力模块nn.MultiheadAttention,如果调用,代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F

# 简单的词汇表和分词器
def simple_tokenizer(sentence):
    word_to_index = {'this': 1, 'is': 2, 'an': 3, 'example': 4, 'sentence': 5}
    tokens = sentence.lower().split()
    return [word_to_index.get(word, 0) for word in tokens]

# 函数:将句子编码为向量
def encode_sentence(sentence, tokenizer, max_len=10):
    tokens = tokenizer(sentence)
    if len(tokens) > max_len:
        tokens = tokens[:max_len]
    else:
        tokens = tokens + [0] * (max_len - len(tokens))
    return torch.tensor(tokens, dtype=torch.long)

# 示例数据
sentence = "this is an example sentence"
vocab_size = 6  # 假设词汇表大小,包括 0
embedding_dim = 512  # 输入每个x1的维度
max_len = 10
# 创建一个嵌入层
embedding_layer = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embedding_dim)
# 将句子编码为输入向量X
encoded_sentence = encode_sentence(sentence, simple_tokenizer, max_len)
# 嵌入句子
embedded_sentence = embedding_layer(encoded_sentence)

# 现成的多头注意力机制
num_heads = 8
attention_layer = nn.MultiheadAttention(embed_dim=embedding_dim, num_heads=num_heads, batch_first=True)

# 需要转置一下维度,因为 nn.MultiheadAttention 期望的输入维度是 [seq_len, batch_size, embed_dim]
embedded_sentence = embedded_sentence.unsqueeze(0)  # 添加 batch 维度
attention_output, attn_weights = attention_layer(embedded_sentence, embedded_sentence, embedded_sentence)

print("Encoded Sentence:", encoded_sentence)
print("Embedded Sentence Shape:", embedded_sentence.shape)
print("Attention Output Shape:", attention_output.shape)
print("Attention Weights Shape:", attn_weights.shape)

  • 28
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大泽泽的小可爱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值