费马小定理&欧拉定理学习笔记

一、费马小定理及证明

p p p 为质数, a a a 为任意自然数,则 a p ≡ a ( m o d p ) a^{p}\equiv a\pmod p apa(modp)

方法一

证明:对 a a a 使用数学归纳法。
① 当 a = 0 a = 0 a=0 时, a p = 0 , a = 0 a^p = 0,a=0 ap=0,a=0 显然成立。
② 假设 a = n a=n a=n 时,结论成立,即 n p ≡ n ( m o d p ) n^p\equiv n\pmod p npn(modp) a = n + 1 a=n+1 a=n+1 时:
( n + 1 ) p − ( n + 1 ) = Σ i = 0 p C p i n i − ( n + 1 ) = C p 0 n 0 + Σ i = 1 p − 1 C p i n i + C p p n p − n − 1 = Σ i = 1 p − 1 C p i n i + ( n p − n ) (n+1)^p-(n+1)=\Sigma_{i=0}^{p}C_{p}^{i}n^{i} -(n+1)= C_{p}^{0}n^{0} + \Sigma_{i=1}^{p-1}C_{p}^{i}n^{i}+C_{p}^{p}n^{p}-n-1 = \Sigma_{i=1}^{p-1}C_{p}^{i}n^{i}+(n^p-n) (n+1)p(n+1)=Σi=0pCpini(n+1)=Cp0n0+Σi=1p1Cpini+Cppnpn1=Σi=1p1Cpini+(npn)
由组合数公式 C p i = p ! i ! ( p − i ) ! ( 1 ⩽ i ⩽ p − 1 ) C_{p}^{i} = \frac{p!}{i!(p-i)!}(1\leqslant i\leqslant p-1) Cpi=i!(pi)!p!(1ip1) , p p p 为质数得 p ∣ C p i p\mid C_{p}^{i} pCpi。(因为 p ! p! p! 中有 p p p 这个因子,下面没有数能把 p p p 约掉)因此 Σ i = 1 p − 1 C p i n i ≡ 0 ( m o d p ) \Sigma_{i=1}^{p-1}C_{p}^{i}n^i\equiv0\pmod p Σi=1p1Cpini0(modp),再由假设结论得 n p − n ≡ 0 ( m o d p ) n^p-n\equiv 0\pmod p npn0(modp),两式做和得 ( n + 1 ) p − ( n + 1 ) ≡ 0 ( m o d p ) (n+1)^{p}-(n+1)\equiv0\pmod p (n+1)p(n+1)0(modp),因此 a = n + 1 a=n+1 a=n+1 时结论仍成立。
综上, p p p 为质数, a a a 为任意自然数,则 a p ≡ a ( m o d p ) a^{p}\equiv a\pmod p apa(modp)

方法二

L e m m a . 1 Lemma.1 Lemma.1 p , c p,c p,c 互质, a c ≡ b c ( m o d p ) ac \equiv bc \pmod{p} acbc(modp) a ≡ b ( m o d p ) a \equiv b \pmod{p} ab(modp)
证明:由 a c ≡ b c ( m o d p ) ac\equiv bc\pmod{p} acbc(modp) 得:
a c − b c ≡ 0 ( m o d p ) ac-bc\equiv0\pmod{p} acbc0(modp)

故:
( a − b ) c ≡ 0 ( m o d p ) (a-b)c\equiv0\pmod{p} (ab)c0(modp)

由于 p , c p,c p,c 互质,有:
a − b ≡ 0 ( m o d p ) a-b\equiv0\pmod{p} ab0(modp)

即:
a ≡ b ( m o d p ) a\equiv b\pmod{p} ab(modp)
L e m m a . 2 Lemma.2 Lemma.2 若序列 a 1 , a 2 , a 3 , . . . , a p a_1,a_2,a_3,...,a_p a1,a2,a3,...,ap p p p 的完全剩余系,且 b , p b, p b,p 互质,则 a 1 b , a 2 b , a 3 b , . . . , a p b a_1b,a_2b,a_3b,...,a_pb a1b,a2b,a3b,...,apb 也是 p p p 的完全剩余系。
证明:采用反证法,即 a 1 b , a 2 b , a 3 b , . . . , a p b a_1b,a_2b,a_3b,...,a_pb a1b,a2b,a3b,...,apb 不是 p p p 的完全剩余系,则必存在 1 ⩽ i , j ⩽ p 1\leqslant i,j\leqslant p 1i,jp ,使得 a i b ≡ a j b ( m o d p ) a_ib\equiv a_jb\pmod{p} aibajb(modp)
根据引理 1 1 1 ,由于 b , p b,p b,p 互质,得 a i ≡ a j ( m o d p ) a_i\equiv a_j\pmod{p} aiaj(modp),与条件矛盾,故假设不成立,即 a 1 b , a 2 b , a 3 b , . . . , a p b a_1b,a_2b,a_3b,...,a_pb a1b,a2b,a3b,...,apb 也是 p p p 的完全剩余系。

接下来给出费马小定理的证明。
证明:
由于 0 , 1 , 2 , . . . , ( p − 1 ) 0, 1, 2, ..., (p-1) 0,1,2,...,(p1) p p p 的完全剩余系, a , p a,p a,p 互质,由引理 2 2 2 得, 0 , a , 2 a , . . . , ( p − 1 ) a 0,a,2a,...,(p-1)a 0,a,2a,...,(p1)a 也是 p p p 的完全剩余系。
因此,
1 × 2 × 3 × . . . × ( p − 1 ) ≡ a × 2 a × 3 a × . . . × ( p − 1 ) a ( m o d p ) 1\times2\times3\times...\times(p-1)\equiv a\times2a\times3a\times...\times(p-1)a\pmod{p} 1×2×3×...×(p1)a×2a×3a×...×(p1)a(modp)

( p − 1 ) ! ≡ ( p − 1 ) ! a p ( m o d p ) (p-1)!\equiv(p-1)!a^p\pmod{p} (p1)!(p1)!ap(modp)

又,因为 p p p 是质数,所以 ( p − 1 ) ! (p-1)! (p1)! p p p 互质。由引理 1 1 1 得, a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1\pmod{p} ap11(modp),即 a p ≡ a ( m o d p ) a^p\equiv a\pmod{p} apa(modp)

二、欧拉定理及证明

a , n a,n a,n 为自然数,且 a , n a,n a,n 互质,则 a φ ( n ) ≡ 1 ( m o d n ) a^{\varphi(n)}\equiv 1\pmod{n} aφ(n)1(modn)
证明:采用与费马小定理证明中的方法二,构造序列如下。
b 1 , b 2 , b 3 , . . . , b φ ( n ) b_1,b_2,b_3,...,b_{\varphi(n)} b1,b2,b3,...,bφ(n) 1 1 1 ~ n n n 中与 n n n 互质的 n φ ( n ) \varphi(n) φ(n) 个数。那么在模 n n n 乘法的意义下 a b 1 , a b 2 , a b 3 , . . . , a b φ ( n ) ab_1,ab_2,ab_3,...,ab_{\varphi(n)} ab1,ab2,ab3,...,abφ(n) 也是 1 1 1 ~ n n n 中与 n n n 互质的 φ ( n ) \varphi(n) φ(n) 个数,即:
{ b 1 , b 2 , b 3 , . . . , b φ ( n ) } = { a b 1 , a b 2 , a b 3 , . . , a b φ ( n ) } \{b_1, b_2, b_3, ... , b_{\varphi(n)}\}=\{ab_1,ab_2,ab_3,..,ab_{\varphi(n)}\} {b1,b2,b3,...,bφ(n)}={ab1,ab2,ab3,..,abφ(n)}

将这两个集合中的数分别累乘得:
Π i = 1 φ ( n ) b i = Π i = 1 φ ( n ) ( a b i ) ( m o d n ) \Pi_{i=1}^{\varphi(n)}b_i = \Pi_{i=1}^{\varphi(n)}(ab_i) \pmod n Πi=1φ(n)bi=Πi=1φ(n)(abi)(modn)

Π i = 1 φ ( n ) b i = a φ ( n ) × Π i = 1 φ ( n ) ( b i ) ( m o d n ) \Pi_{i=1}^{\varphi(n)}b_i = a^{\varphi(n)} \times \Pi_{i=1}^{\varphi(n)}(b_i) \pmod n Πi=1φ(n)bi=aφ(n)×Πi=1φ(n)(bi)(modn)

a φ ( n ) ≡ 1 ( m o d n ) a^{\varphi(n)}\equiv1\pmod n aφ(n)1(modn)

三、欧拉定理与费马小定理的关系

费马小定理是欧拉定理中 n n n 为质数的特殊情况。
考虑欧拉定理中 n n n 为质数时, φ ( n ) = n − 1 \varphi(n) = n-1 φ(n)=n1 ,故:
a φ ( n ) = a n − 1 ≡ 1 ( m o d n ) a^{\varphi(n)} = a^{n-1}\equiv1\pmod n aφ(n)=an11(modn)

a n = a ( m o d n ) a^{n} = a\pmod n an=a(modn)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值