
机器学习
fairy_zzr
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
适合小白:Pytorch+ SSD +自己的数据集实现目标识别
说明:本文是一位python、pytorch、深度学习都是小白的菜鸟借用各种资源直接实现的。只有实现过程,没有理论。由于按操作顺序写的,所以提醒看官:数据集事先要处理好,图片大小最好调成500x375,不然会卡死。。。 某位大佬的SSD项目下载地址: 链接: [https://pan.baidu.com/s/1L5E9iZBhNhUWw3NBAb30yw] 提取码: uk5n 再配合B站up主小鸡炖技术的讲解视频,小白我终于实现了SSD目标检测啦。。。 1、准备VOC数据 先准备20张照片作为一个小的数据集原创 2020-11-13 11:01:47 · 1642 阅读 · 5 评论 -
BP神经网络—反向传播算法
为什么要学习反向传播算法? 对于前馈神经网络的参数学习,如果采用交叉熵损失函数,对于样本(x,y),其损失函数为 给定训练集D={(xn,yn)}, N >= n >=0,将每个样本xn输入给前馈神经网络,得到网络输出为yn,其在数据集D上的结构化风险函数为 其中W和b分别表示网络中所有的权重矩阵和偏置向量, (||W|| F)^2是正则化项,用来防止过拟合,lambda是为正数的超参数,lambda越大,W越接近于0。 有了学习准则和训练样本,网络参数可以通过梯度下降法来进行学习。在梯度下原创 2020-10-12 16:23:38 · 773 阅读 · 0 评论