两个坐标系转换的变换矩阵

####问题:假定下图中的A坐标系是世界坐标系,我们想求出目标坐标系B到世界坐标系的旋转矩阵。
在这里插入图片描述
从B到A的变换既有旋转也有平移。从B到A的变换矩阵是一个4x4的矩阵算子。
在这里插入图片描述
在这里插入图片描述
B到A的旋转矩阵的定义式:
在这里插入图片描述
其中
在这里插入图片描述
在这里插入图片描述
VS C++实现上述旋转矩阵求解:


```cpp
//求旋转矩阵(两个坐标系)适用于已知转换前的坐标系的三个轴分量,和目标坐标系的一个轴分量。若已知6个坐标轴分量,则注释y,x那两行
Eigen::Matrix3d CoordinateRotation(Eigen::Vector3d u, Eigen::Vector3d v, Eigen::Vector3d w,
	Eigen::Vector3d & x, Eigen::Vector3d & y, Eigen::Vector3d & z)
{

	Eigen::Matrix3d transition;

		y = z.cross(w);//若你完全已知六个轴分量请注释这两行
		x = y.cross(z);//

	x.normalize();
	y.normalize();
	z.normalize();
	transition << u.dot(x), v.dot(x), w.dot(x),
		u.dot(y), v.dot(y), w.dot(y),
		u.dot(z), v.dot(z), w.dot(z);
	transition = transition.transpose();
	return transition;

}
其中u,v,w分别是转换之前的坐标系的坐标轴的分量,x,y,z是转换后的矩阵的坐标轴分量。上述求法是把基坐标系的z轴转换到与目标坐标系的z坐标轴处。所需的头文件自己加,大概就是#include <Eigen/Dense>那些。

### 地球坐标系到地理坐标系转换矩阵 在地理信息系统 (GIS) 和制图学中,地球坐标系(通常指笛卡尔直角坐标系)与地理坐标系之间转换是一个重要的操作。这种转换涉及到从三维空间中的位置描述转变为经纬度表示。 对于地球坐标系 $(X, Y, Z)$ 到地理坐标系 $(\lambda, \phi, h)$ 的变换,其中 $\lambda$ 是经度,$\phi$ 是纬度,而 $h$ 表示椭球面高度,可以采用如下公式: $$ λ = atan2(Y,X)[^1] $$ $$ φ = arctan(\frac{Z}{\sqrt{X^{2}+Y^{2}}}) $$ 然而,在实际应用中,为了简化计算过程并提高精度,常常会利用旋转和平移组成的齐次变换矩阵来进行此转换。具体来说,该转换可以通过一系列旋转变换来实现,这些变换将原始坐标轴逐步调整至目标坐标系统的方向上。 假设存在一个已知参数集定义了两个坐标系统间的关系,则可通过构建相应的旋转矩阵来完成这一任务。例如,当考虑地心大地坐标系向地方平面坐标系投影时,可能涉及到了三个角度——绕 X 轴、Y 轴以及 Z 轴的旋转[^2]。 下面给出了一种基于罗德里格斯公式(Rodrigues' rotation formula)的方法用于创建这样的旋转矩阵 R: ```python import numpy as np def rodrigues_rotation_matrix(k, theta): """ 计算给定单位矢量 k 及其对应的旋转角度 θ 下的空间旋转矩阵. 参数: k : array_like 单位长度的方向矢量 [kx ky kz]. theta : float 绕着 k 方向逆时针测量的角度(弧度). 返回: ndarray 形状为 (3, 3) 的正交旋转矩阵. """ K = np.array([[0, -k[2], k[1]], [k[2], 0, -k[0]], [-k[1], k[0], 0]]) I = np.eye(3) return I + np.sin(theta)*K + (1-np.cos(theta))*np.dot(K,K) # 定义旋转轴和角度 axis_x = np.array([1., 0., 0.]) angle_x = ... # 需要根据实际情况设定具体的数值 R_x = rodrigues_rotation_matrix(axis_x, angle_x) ``` 需要注意的是上述代码片段仅展示了如何围绕单个轴线执行一次特定角度的旋转;完整的坐标转换还需要综合考虑其他必要的平移分量以及其他维度上的旋转效果,并最终形成统一的整体变换矩阵应用于待处理的数据点集合之上。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值