统计学习方法 第3章:k近邻法

github链接:https://github.com/gdutthu/Statistical-learning-method
知乎专栏链接:https://zhuanlan.zhihu.com/c_1252919075576856576
算法总结:

  1. knn模型不需要预训练。
  2. k近邻法的三要素:k值的选择、距离度量以及分类决策规则。
  3. k近邻法即能处理分类问题,也能解决回归问题。

补充知识

  1. 近似误差、估计误差

1 提出模型

在上一小节的感知机模型,我们通过寻找一个线性分类超平面来将两个线性可分的数据相互分开。
在这里插入图片描述
在实际的数据处理中,当所需要处理的数据存在以下特性是

  1. 数据集中数据的种类超过2。
  2. 数据间的关系是非线性甚至数据间不存在关系。

以下图为例,下图为实际流水线中某工艺产品的实际数据。数据类别总数是10,从0至9.其中类别为0为合格产品,类别1至9为不合格产品,并且每个类别代表了不同的产品不合格原因。
现在给你一个产品,需要你判断这个产品是否是合格产品;如果不合格,那么请你给出该产品不合格的原因。
在这里插入图片描述
那么在knn中,是怎么进行样本的分类问题呢。
1.**找到样本x最近的点,该点的类就是样本的预测类。**这是一种方法,但是如果有噪音呢(这个输入实例恰巧在两个类别的分界处)

2.**与每一团的中心点进行距离计算。**分别计算各个类别的中心点,判断与该样本点距离最小的类即为预测输出类。这样会不会有问题吗?我们看一下上图中绿色和紫色交叉的地方,很明显在这个交叉位置离绿色很近,与紫色中心点较远,但实际上紫色的。所以……不太好
在这里插入图片描述3.**找到样本点周围的K个点,其中占数目最多的类即预测输出的类。**克服了前两种方法的弊端,实际上这就是K近邻所使用的算法

2 knn三要素

2.1 距离度量

特征空间中两个实例点的距离就是两个实例的相似度。k近邻模型的空间一般是 n n n维实数向量空间 R n \mathbf{R}^{n} Rn一般采用的距离是欧式距离。
但是在实际数据集中,我们可以根据数据集的数据特点,选择不同的距离计算公式。设特征空间 X \mathcal{X} X n n n维实数向量空间 R n \mathbf{R}^{n} Rn x i , x j ∈ X x_{i}, x_{j} \in \mathcal{X} xi,xjX x i = ( x i ( 1 ) , x i ( 2 ) , ⋯   , x i ( n ) ) T x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \cdots, x_{i}^{(n)}\right)^{\mathrm{T}} xi=(xi(1),xi(2),,xi(n))T x j = ( x j ( 1 ) , x j ( 2 ) , ⋯   , x j ( n ) ) T x_{j}=\left(x_{j}^{(1)}, x_{j}^{(2)}, \cdots, x_{j}^{(n)}\right)^{\mathrm{T}} xj=(xj(1),xj(2),,xj(n))T x i , x j x_{i}, x_{j} xi,xj L p L_{p} Lp距离定义为
L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L_{p}\left(x_{i}, x_{j}\right)=\left(\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right|^{p}\right)^{\frac{1}{p}} Lp(xi,xj)=(l=1nxi(l)xj(l)p)p1

其中 L p L_{p} Lp距离就是更加一般化定义的距离公式。我们可以根据数据集数据的特点,人为设定 p p p p ⩾ 1 p \geqslant 1 p1)的取值,从而使得knn模型能更好地进行分类或回归任务。
在下面,介绍几种常见的距离公式
1、当 p = 2 p=2 p=2时,称为欧氏距离(Euclidean distance),即
L 2 ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ 2 ) 1 2 L_{2}\left(x_{i}, x_{j}\right)=\left(\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right|^{2}\right)^{\frac{1}{2}} L2(xi,xj)=(l=1nxi(l)xj(l)2)21
2、当 p = 1 p=1 p=1时,称为曼哈顿距离(Manhattan distance),即
L 1 ( x i , x j ) = ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ L_{1}\left(x_{i}, x_{j}\right)=\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right| L1(xi,xj)=l=1nxi(l)xj(l)
3、当 p = ∞ p=\infty p=时,它是各个坐标距离的最大值,即
L ∞ ( x i , x j ) = max ⁡ l ∣ x i ( l ) − x j ( l ) ∣ L_{\infty}\left(x_{i}, x_{j}\right)=\max _{l}\left|x_{i}^{(l)}-x_{j}^{(l)}\right| L(xi,xj)=lmaxxi(l)xj(l)
在这里插入图片描述

2.2 k值的选择

k值的选择对k近邻法的结果会产生重大影响。如下图,当k=1时,输入点就被预测为class2;当k=5时,输入点就被预测为class1。
在这里插入图片描述
补充知识:近似误差与估计误差

  • 近似误差:可以理解为对现有训练集的训练误差。
  • 估计误差:可以理解为对测试集的测试误差。

近似误差关注训练集,如果近似误差小了会出现过拟合的现象,对现有的训练集能有很好的预测,但是对未知的测试样本将会出现较大偏差的预测。模型本身不是最接近最佳模型。

估计误差关注测试集,估计误差小了说明对未知数据的预测能力好。模型本身最接近最佳模型。

总结

  1. 预测结果好,估计误差小 。
  2. 模型容易过拟合,近似误差小。

k值选取对模型的影响
一、如果选择较小的k值,就相当于用较小的邻域的训练实例进行预测
优点: 学习的近似误差会变小, 只有与输入实例较劲(相似的)训练实例才会对预测结果起作用。

缺点: 学习的估计误差会变大,预测结果对近邻的实例点非常敏感,如果领近的实例点恰巧是噪声,那么预测就会变错。(也就是,k值的减小就意味着模型变得复杂,容易发生过拟合

二、如果选择较大的k值,就相当于用较大的邻域的训练实例进行预测
优点: 学习的估计误差会变小,预测结果对近邻的实例点非常敏感预测效果好

缺点: 学习的近似误差会变大, 这时离输入点较远的点(不相似的)训练实例也会对预测起作用。

在实际应用中,通常要采用交叉验证的方法来选取最优的k值。(k一般选取一个较小的数值,不要超过20

2.3 决策标准

k近邻法的分类决策往往就是多数表决,即由输入实例的k个领近的训练实例的多数类决定输入实例的类

3 kd树

以后再补

4 代码附录

在这里采用mnist数据集进行k近邻法多分类实验,采用TensorFlow2.0进行加载数据(懒得写函数加载模块了hhh)。在代码环节中,对测试集中的所有实例点都进行了测试,所需时间较长。如果想要测试部分样本点,稍微修改下代码即可。
注意点:
TensorFlow加载进来的mnist数据集是uint8格式,不能显示负号,要将数据格式改成int32。
其中在knn模型中,需要对data数据进行距离计算,label部分不需要显示符合。故只需要对data部分数据集改格式。

4.1 原始knn算法,未包含kd tree模块

import tensorflow as  tf
import numpy as np

# 加载训练mnist数据集的数据集和测试数据集
def MnistData():
    #原始的训练数据集是60000张尺寸为28*28的灰色照片,测试数据集是10000张尺寸为28*28的灰色照片
    mnist = tf.keras.datasets.mnist
    (train_data, train_label), (test_data, test_label) = mnist.load_data()
    train_data = train_data.reshape(60000, 784)
    test_data = test_data.reshape(10000, 784)
    #修改label的格式,默认格式为uint8,是不能显示负数的,将其修改为int32格式
    train_data=np.array(train_data,dtype='int32')
    test_data =np.array(test_data,dtype='int32')
    return (train_data, train_label), (test_data, test_label)

#knn算法(不包括kd树)
def knn(train_data,train_label,test_data, test_label,k):
    count=0  #记录knn模型预测成功的次数
    for i in range(test_data.shape[0]):      #对测试集每个实例点都进行knn算法处理
        # 计测测试集输入点与训练数据集所有点的算欧式距离
       distance=np.sqrt(np.sum(np.square(test_data[i] - train_data),axis=1))
       #np.argsort函数返回的是数组中数组值从小到大对应的索引值
       index=np.argsort(distance) #argsort(distance)是将所计算得到距离从小到大排列,提取其对应的索引
       selectIndex=index[:k]                    #选取出与当前输入点距离最小的前k个的实例点对应的索引
       classNumber=len(np.unique(train_label))  #出重处理,得到train_label所存在不同的元素的数量
       labelList=[0]*classNumber                #初始化列表,计算不同label出现的次数
       for j in selectIndex:   #记录train_label在selectIndex索引对应的label出现的次数
           # train_label[j]:selectIndex当前索引在训练数据集中对应的种类
           labelList[train_label[j]] +=1
       # np.argmax(labelList),找到出现次数最多的种类对应的索引(索引是0到9,对应不同的种类)
       predict=np.argmax(labelList)   #出现次数最多的种类,等同于预测的种类
       if predict ==test_label[i]:
           count +=1
       if i %100==0 and i!=0:     #每预测一百次,就打印当前时刻模型的预测准确率
            acc=count/i
            print(' %d epoch,model accuracy is %f: '%(i,acc))
if __name__=="__main__":
    # 加载mnist数据集
    (train_data, train_label), (test_data, test_label)=MnistData()
    #knn模型
    knn(train_data,train_label,test_data, test_label,k=25)

knn算法,未包含kd tree模块

代码待补充
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值