Description
假设二叉排序树以后继线索链表作存储结构,编写程序,满足以下要求:
输出该二叉排序树中所有大于a小于b的关键字;
在二叉排序树中插入一个关键字;
在二叉排序树中删除一个关键字。
Input
第一行按先序输入二叉排序树各结点(结点值大于0),其中-1表示取消建立子树结点;第二行输入要求1中a、b,用空格隔开;第三行输入要求2中要插入的关键字;第四行输入要求3中要删除的关键字。
Output
按照中序序列,分三行输出要求1、要求2和要求3的结果。
-
Sample Input
12 8 4 -1 -1 10 -1 -1 16 13 -1 -1 18 -1 -1 10 17 6 12
-
Sample Output
12 13 16 4 6 8 10 12 13 16 18 4 8 10 13 16 18
#include<stdio.h>
#include<stdlib.h>
typedef struct BinNode{
int data;
struct BinNode *lchild;
struct BinNode *rchild;
}BinNode,*BinTree;
void CreateBinTree(BinTree *tree)
{
int ch;
scanf("%d",&ch);
if(ch == -1)
{
(*tree) = NULL;
}
else
{
*tree = (BinTree)malloc(sizeof(BinNode));
(*tree)->data = ch;
CreateBinTree(&((*tree)->lchild));
CreateBinTree(&((*tree)->rchild));
}
}
void Search(BinTree T,int m,int n)
{
if(T)
{
Search(T->lchild,m,n);
if(T->data > m&& T->data < n)printf("%d ",T->data);
Search(T->rchild,m,n);
}
}
void Inorder(BinTree T)
{
if(T)
{
Inorder(T->lchild);
printf("%d ",T->data);
Inorder(T->rchild);
}
}
void Insert(BinTree *T,int key)
{
if(!(*T))
{
(*T) = (BinTree)malloc(sizeof(BinNode));
(*T)->data = key;
(*T)->lchild = (*T)->rchild = NULL;
return;
}
if(key == (*T)->data )
return;
if(key > (*T)->data )
Insert( &((*T)->rchild), key );
else
Insert( &((*T)->lchild), key );
}
bool Delete(BinTree *T)
{
BinTree L;
if (!(*T)->lchild && !(*T)->rchild)
*T = NULL;
else if (!(*T)->lchild)
*T = (*T)->rchild;
else if (!(*T)->rchild)
*T = (*T)->lchild;
else
{
L = (*T)->lchild;
while (L->rchild)
L = L->rchild;
L->rchild = (*T)->rchild;
*T = (*T)->lchild;
}
return true;
}
bool DeleteBST(BinTree *T, int key)
{
if (!*T)
return false;
else if (key == (*T)->data)
{
Delete(T);
return true;
}
else if (key < (*T)->data)
{
return DeleteBST(&((*T)->lchild), key);
}
else
{
return DeleteBST(&((*T)->rchild), key);
}
}
int main(){
BinTree T = NULL;
CreateBinTree(&T);
int m,n,w,k;
scanf("%d %d",&m,&n);
scanf("%d",&w);
scanf("%d",&k);
Search(T,m,n);
printf("\n");
Insert(&T,w);
Inorder(T);
printf("\n");
DeleteBST(&T,w);
DeleteBST(&T,k);
Inorder(T);
printf("\n");
return 0;
}
删除节点的情况有点复杂QAQ
删除的另一种情况:
BinTree Delete( BinTree BST, ElementType X )
{
Position Tmp;
if( !BST )
printf("要删除的元素未找到");
else {
if( X < BST->Data )
BST->Left = Delete( BST->Left, X ); /* 从左子树递归删除 */
else if( X > BST->Data )
BST->Right = Delete( BST->Right, X ); /* 从右子树递归删除 */
else { /* BST就是要删除的结点 */
/* 如果被删除结点有左右两个子结点 */
if( BST->Left && BST->Right ) {
/* 从右子树中找最小的元素填充删除结点 */
Tmp = FindMin( BST->Right );
BST->Data = Tmp->Data;
/* 从右子树中删除最小元素 */
BST->Right = Delete( BST->Right, BST->Data );
}
else { /* 被删除结点有一个或无子结点 */
Tmp = BST;
if( !BST->Left ) /* 只有右孩子或无子结点 */
BST = BST->Right;
else /* 只有左孩子 */
BST = BST->Left;
free( Tmp );
}
}
}
return BST;
}