ConcurrentHashMap简介
ConcurrentHashMap是java中并发安全的HashMap,HashMap是我们最常使用的容器,但HashMap是不安全的。在多线程情况下,需使用ConcurrentHashMap。ConcurrentHashMap在jdk1.7底层使用Segment实现分段锁,ConcurrentHashMap底层是Segment数组,而每个Segment对象下面是个小型的HashMap。Segment对象继承ReentrantLock,操作时通过ReentrantLock来实现锁操作。
jdk1.8后,ConcurrentHashMap底层和HashMap相同,数组+链表/红黑树,而缩小锁力度,使用synchronized关键字锁数组的元素来实现锁操作。
ConcurrentHashMap源码
put方法
public V put(K key, V value) {
return putVal(key, value, false);
}
直接调用putVal方法
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
//根据key算出hash值
int hash = spread(key.hashCode());
int binCount = 0;
//自旋,直到put成功
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
//数组为空,初始化数组
if (tab == null || (n = tab.length) == 0)
tab = initTable();
//根据hash值算出数组下标,数组中取出Node对象
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
//为空new Node后cas设置到下标位置
//cas成功直接break,失败自旋再次cas
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break;
}
//table[i]的Node的hash为-1
//表示整个ConcurrentHashMap在扩容(某一个或多个线程正在扩容)
else if ((fh = f.hash) == MOVED)
//帮助线程扩容(扩容操作下章详细讲解)
tab = helpTransfer(tab, f);
else {
//根据下标已经找出Node,判断Node是链表还是红黑树,替换值
V oldVal = null;
//若为链表,则对链表第一个节点上锁
//若未红黑树,则对整个红黑树对象TreeBin上锁,因为红黑树的根节点root会变化
synchronized (f) {
//判断f是否为头节点,防止加锁过程中别的线程操作
if (tabAt(tab, i) == f) {
//判断hash值 >= 0,表示链表,否则为红黑树
if (fh >= 0) {
binCount = 1;
//循环链表
for (Node<K,V> e = f;; ++binCount) {
K ek;
//比较hash和key,相同设置值为value
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
//遍历到最后,还没有相同的,则新增Node,插入到最后
//尾插法
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
//为TreeBin,代表为红黑树
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
//向红黑数中添加节点
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
//put链表 binCount = 1,随着链表循环++,即链表数量
//put红黑树 binCount = 2
if (binCount != 0) {
//判断binCount大于默认8,则树化
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
//返回oldVal
if (oldVal != null)
return oldVal;
//跳出循环
break;
}
}
}
//先对size+1,大于阈值扩容
addCount(1L, binCount);
return null;
}
总结下过程:
1、算出hash值
2、数组未初始化先初始化数组
3、根据hash值算出数组下标,节点为空直接新建Node赋值
4、数组正在扩容,帮助扩容
5、Node节点不为空,上锁
6、若为链表,循环链表,存在替换,不存在新建Node插入尾部
7、若为红黑树,插入树中
8、插入成功判断是否需要树化,链表转红黑树
9、替换旧值直接返回旧值
10、新增,ConcurrentHashMap容量+1,判断是否需要扩容,需要执行扩容操作
initTable初始化容器
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
//自旋
while ((tab = table) == null || tab.length == 0) {
//sizeCtl初始为0
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
//cas设置sizeCtl为-1 ,变向加锁,只有一个线程可以设置成功
//其他线程false,再次循环进去第一个if,执行Thread.yield(),让出CPU时间片
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
//默认大小16
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
//新建Node<K,V>[]
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
//设置sc为数组大小的0.75
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
treeifyBin树化操作
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
//数组长度小于64
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
//尝试改变容器大小
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
//上锁,防止树化其他线程操作
//对链表的首元素上锁
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
//循环修改成双向链表,方便转红黑树
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
//hd为链表首节点,传入TreeBin的构造方法中
//数组对应的Node节点为TreeBin,整个红黑树对象
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
size 容器大小
public int size() {
//计算出大小
long n = sumCount();
//校验大小值,是否在0 - 最大值 区间
return ((n < 0L) ? 0 :
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int)n);
}
调用sumCount统计大小,看源码
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a;
long sum = baseCount;
if (as != null) {
//以baseCount为基础,累加所有CounterCell数组上的value值
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
如下图,先说明下ConcurrentHashMap统计
为了保证统计大小的多编程效率,采用baseCount+CounterCell[]来统计大小,线程put成功addCount 时可以baseCount+1,也可以随机取一个CounterCell,value值+1。
统计容器大小时,以baseCount为基础,累加所有CounterCell数组上的value值,最后得出容器大小。
addCount 修改容器大小
//remove时 x = -1
//put时 x = 1
//put时 链表 check = 链表长度
//put时 红黑树 check =2
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
//所有线程cas竞争baseCount, baseCount+1成功设置,不成功进入if逻辑
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
//ThreadLocalRandom.getProbe() & m
//随机数 & CounterCell[].length 随机获取CounterCell[]下标
//CounterCell a为CounterCell[]随机一个
//cas 对CounterCell中value+1
// 失败进去fullAddCount方法
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
//as == null
//as.length == 0
//CounterCell[随机数] 为空
//CounterCell[随机数] 不为空cas value失败
//上述4中情况进去
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
//扩容操作,下一章节细说
//sizeCtl 0.75 * 数组长度 且table不为null 且 table长度小于最大值
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
//(rs << RESIZE_STAMP_SHIFT) + 2) 为负数
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
总结下addCount步骤:
1、所有线程cas竞争baseCount,成功设置+1
2、失败则会找到CounterCell数组下标,cas设置value+1
3、其他情况下会调用fullAddCount,情况见注解
fullAddCount写入大小
fullAddCount为本章节最难代码,希望我的注解和总结能帮你看懂
private final void fullAddCount(long x, boolean wasUncontended) {
int h;
//ThreadLocalRandom.getProbe() 线程随机数,每个线程对应一个数,每次都一样
//为0则初始化getProbe,然后重新获取
if ((h = ThreadLocalRandom.getProbe()) == 0) {
ThreadLocalRandom.localInit();
h = ThreadLocalRandom.getProbe();
wasUncontended = true;
}
boolean collide = false;
for (;;) {
CounterCell[] as; CounterCell a; int n; long v;
//判断counterCells数组不为null且大于0
if ((as = counterCells) != null && (n = as.length) > 0) {
//(n - 1) & h 根据h值算出下标,判断此下标对应的CounterCell为null
if ((a = as[(n - 1) & h]) == null) {
//对应的CounterCell为null,先判断cellsBusy为0表示没有线程使用
if (cellsBusy == 0) {
//新建CounterCell对象
CounterCell r = new CounterCell(x);
//再次判断数组是否有线程使用未使用cas设置
//cellsBusy 为1,表示数组使用中
if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean created = false;
try {
CounterCell[] rs; int m, j;
//判断counterCells数组已初始化且 h对应的下标的CounterCell为null
//则赋值new的CounterCell,created为true
if ((rs = counterCells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
created = true;
}
} finally {
//表示线程用完了
cellsBusy = 0;
}
//创建成功跳出循环
if (created)
break;
continue;
}
}
//别的线程操作数组collide改为fasle
collide = false;
}
//addCount中进来时wasUncontended为false
//修改成true,走ThreadLocalRandom.advanceProbe(h)生成新值
//意思设置ACounterCell失败,则改变hash,试着设置其他CounterCell
else if (!wasUncontended)
wasUncontended = true;
//cas设置线程对应的CounterCell的value+1,成功break
else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
break;
//数组发生变化或者 数组长度 >= CPUS,则不再扩容
else if (counterCells != as || n >= NCPU)
collide = false;
else if (!collide)
collide = true;
// collide = true 进入,表示扩容
else if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
try {
if (counterCells == as) {
//new CounterCell[],大小是之前2倍
CounterCell[] rs = new CounterCell[n << 1];
//将之前数组值赋值给新数组
for (int i = 0; i < n; ++i)
rs[i] = as[i];
counterCells = rs;
}
} finally {
cellsBusy = 0;
}
collide = false;
continue;
}
//ThreadLocalRandom.getProbe()生成新值,否则生成的值相同
h = ThreadLocalRandom.advanceProbe(h);
}
//cellsBusy表示是否有其他线程使用,0表示没有
//cas设置 CELLSBUSY 为 1,表示有线程使用数组
else if (cellsBusy == 0 && counterCells == as &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean init = false;
try {
// 判断counterCells是否有改变,还是之前的则初始化
if (counterCells == as) {
//初始化CounterCell数组,大小为2
CounterCell[] rs = new CounterCell[2];
//CounterCell[h & 1]]赋值为CounterCell(1)
//h & 1 为 0 或 1
rs[h & 1] = new CounterCell(x);
counterCells = rs;
init = true;
}
} finally {
//表示线程用完了
cellsBusy = 0;
}
//初始化成功break
if (init)
break;
}
//两个线程同时进来,这是CounterCell[]为空
//一个线程初始化CounterCell[],还有一个线程cas设置baseCount
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
break;
}
}
虽然每行代码都有注解,但在一起就看不懂了。的确很复杂,我们来总结下过程。
for (;;) {
CounterCell[] as; CounterCell a; int n; long v;
if ((as = counterCells) != null && (n = as.length) > 0) {
}
else if (cellsBusy == 0 && counterCells == as &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
}
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
break;
}
我们看自旋中最外层3个判断
1、CounterCell数组长度大于0,则操作CounterCell数组,取线程对应CounterCell的value+1
2、cellsBusy为0表示无线程操作,设置cellsBusy为1,初始化CounterCell数组
3、多线程同时进来时,有的线程操作CounterCell数组,有的线程操作baseCount+1
总结下步骤:
1、第一次进来CounterCell数组未初始化,进入第二个if,cas设置cellsBusy为1,初始化大小为2的CounterCell数组,根据hash设置数组0或1位置为value=传入x的CounterCell对象,cas设置cellsBusy为0,退出
2、若多线程同时进入第二个if,只有一个线程会cas设置cellsBusy成功,其他线程进入第三个if,cas修改baseCount值
3、接下来有线程进来,此时CounterCell已初始化,进入第一个if
3.1 根据h值算出下标,若此下标对应的CounterCell为null,新建value=传入x的CounterCell对象,cas设置cellsBusy为0成功,赋值给线程对应下标的CounterCell,cas设置cellsBusy为0,退出
3.2 下标对应的CounterCell不为nul,cas设置value+1,成功退出
3.3 cas竞争失败,重新生成线程新值,即改变线程对应的CounterCell元素,继续循环走
3.1 -》.3.2 -》3.3逻辑
3.4 若仍失败,表示竞争线程较多,CounterCell数组较小,竞争较大,会扩容CounterCell数组,大小是之前2倍,迁移旧的数组value至新数组
3.5 继续循环走3.1 -》.3.2 -》3.3逻辑,成功退出,失败继续扩容,直到 数组长度 >= CPU数量,则不再扩容
get方法
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
//计算hash
int h = spread(key.hashCode());
//table存在,找出key对象下标的Node节点
//table不存在或者对应的Node不存在返回null
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
//hash值相同,表示table对应下标只有一个元素,比较key值相同返回值
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
//红黑树中查询值
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
//链表中循环找出key相同值
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
get方法就比较简单,参考注释一眼看懂。
后话
ConcurrentHashMap真的很复杂,需要慢慢品,下一章节带来扩容内容,更加复杂。上面内容是自己看源码的心得,也可能哪边有理解错误的地方,望指正。