End-to-End Kernel Learning withSupervised Convolutional Kernel Networks笔记

该文章提出一种结合了核方法和端对端学习的卷积核网络(CKN)。CKN首先将图像局部区域映射到核特征空间,然后通过有监督学习优化每个层的核子空间,解决了传统核方法与端对端学习的不兼容问题。在图像分类和超分辨率任务中进行了评估。
摘要由CSDN通过智能技术生成

keywords: CKN, supervised
作者: Julien Mairal
发表时间: 2016
方法: 将图像的局部邻域映射到RKHS中,再投影到RKHS的子空间生成“特征映射”,在子空间进行线性池化相当于在生成的特征图像上进行线性池化,然后将每层核组合起来形成多层映射。然后利用有监督的最小化代价函数和反向传播对网络进行优化。
源代码: https://gitlab.inria.fr/mairal/ckn-cudnn-matlab
笔记: https://app.yinxiang.com/shard/s62/nl/21136003/e3d099d2-3489-4168-803f-9138265cf142
精读: Yes
结论: 无监督的方式构造CKN,有监督的方式优化网络
问题: 解决核方法和端对端的学习天然不适配的问题

Summary

论文介绍了一种基于多层核机的图像表示。传统核方法是数据表示与预测任务解耦,论文的方法是在有监督下构造核。首先对无监督的CKN进行性能提升,然后导出反向传播规则来利用有标签的训练数据。最终的模型是:是一种新型的CKN,其中在每一层优化滤波器等价于在RKHS中学习线性子空间。在图像分类实验图像超分辨率实验上进行评估。

Reaserch Objectives/Background/Problem Statements

基于正定核的非参数模型在神经网络重新活跃之前非常受欢迎,核方法的优点是非常通

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值