聚类五之总结

本文探讨了不同规模数据集下聚类算法的选择策略。针对大数据量推荐使用 k-means,一般数据量适用最大密度聚类与 DBSCAN,小数据量则采用谱聚类。当类别数未知且存在噪声时,建议采用密度聚类如 DBSCAN,该算法能有效识别噪声。
摘要由CSDN通过智能技术生成

1. 聚类方法的选择

(1)对于数据量较大的情况:k-means

  (2)  对于数据量较一般的情况:最大密度聚类,DBSCAN

  (3) 对于数据量较少的情况:谱聚类

2. 类别数目k未知,且数据有噪声,可使用密度聚类(如DBSCAN,最大密度聚类),DBSCAN有天然发现噪音的方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值