numpy实现K-means聚类算法(可选是否已知类别数)和VQ-LBG矢量量化算法以及散点数据生成(含完整实验报告)
实验报告完整,质量不低,加上你学校的封面就能交,也可用来交流学习:
(20条消息) 模式识别K-means和VQ-LBG算法的完整实验报告(加上名字就能交)-机器学习文档类资源-CSDN文库
主要描述一下代码功能
只有一个main文件,里面有四个函数
1、数据生成函数
def Databuild(sample_num, cla_num, *cla_locat)
# 输入依次是样本数, 类别数,类别中心
# 输出数据数组
2、VQ-LBG函数
def VQ_LBG(code_num, para1 ,data)
# 输入依次是码字个数、参数、数据
# 输出依次是各码字位置、各码字所含样本点
3、K-menas函数
def K_means(data, know_cla_num = False, *para)
# 当 know_cla_num=True 时,为已知类别数的K-means
# 输入依次是数据、True、类别数
# 输出依次是各聚类中心位置、各聚类中心所含样本点
# 当 know_cla_num=False 时,为未知类别数的K-means
# 输入依次是数据、False、迭代终止参数
# 输出依次是各聚类中心位置、各聚类中心所含样本点
4、主函数
def main()
# 用来生成数据、进行聚类操作、画图
参考结果如下:
代码功能完整,注释丰富,非常适合大家学习交流!