特征工程系列:GBDT特征构造以及聚类特征构造

本文深入探讨了如何利用GBDT进行特征构造,解释了GBDT的原理、关键点以及其实现代码,同时对比了GBDT与RF的区别。此外,还介绍了聚类算法在特征构造中的作用,包括聚类流程和实际应用案例。通过GBDT和聚类,可以有效地提升机器学习模型的性能。
摘要由CSDN通过智能技术生成

特征工程系列:GBDT特征构造以及聚类特征构造

本文为数据茶水间群友原创,经授权在本公众号发表。

关于作者:JunLiang,一个热爱挖掘的数据从业者,勤学好问、动手达人,期待与大家一起交流探讨机器学习相关内容~

0x00 前言

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。

那特征工程是什么?

特征工程是利用数据领域的相关知识来创建能够使机器学习算法达到最佳性能的特征的过程。

特征工程又包含了 Data PreProcessing(数据预处理)、Feature Extraction(特征提取)、Feature Selection(特征选择)和 Feature construction(特征构造)等子问题,本章内容主要讨论特征构造的方法。

640?wx_fmt=jpeg

创造新的特征是一件十分困难的事情,需要丰富的专业知识和大量的时间。机器学习应用的本质基本上就是特征工程。

之前文章已经介绍了聚合特征构造、转换特征构造、笛卡尔乘积特征构造和遗传编程特征构造,接下来将介绍怎么使用GBDT进行特征构造以及使用聚类进行特征构造。

0x01 GBDT特征构造

1.原理

GBDT 是一种常用的非线性模型,基于集成学习中 boosting 的思想,由于GBDT本身可以发现多种有区分性的特征以及特征组合,决策树的路径可以直接作为 LR 输入特征使用,省去了人工寻找特征、特征组合的步骤。所以可以将 GBDT 的叶子结点输出,作为LR的输入,如图所示:

640?wx_fmt=jpeg

这种通过 GBDT 生成LR特征的方式(GBDT+LR),业界已有实践(Facebook,Kaggle-2014),且效果不错,是非常值得尝试的思路。

2.关键点

1)采用ensemble决策树而非单颗树

一棵树的表达能力很弱,不足以表达多个有区分性的特征组合,多棵树的表达能力更强一些。GBDT 每棵树都在学习前面棵树尚存的不足,迭代多少次就会生成多少颗树。按 paper 以及 Kaggle 竞赛中的 GBDT+LR 融

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值