数据质量监控:如何让老板相信你的数据?

本文探讨了数据质量的四个关键要素:完整性、准确性、一致性和及时性,并结合业务流程与数据处理过程,提供了数据质量监控的设计思路与技术方案。通过分析数据接入、清洗和结果计算阶段的问题,强调了数据质量对业务决策的重要性。同时,文章还讨论了实施监控面临的挑战及解决方案,旨在建立可靠的数据质量监控体系。
摘要由CSDN通过智能技术生成

0x00 概述

随着大数据时代的带来,数据的应用也日趋繁茂,越来越多的应用和服务都基于数据而建立,数据的重要性不言而喻。**而且,数据质量是数据分析和数据挖掘结论有效性和准确性的基础,也是这一切的数据驱动决策的前提!**如何保障数据质量,确保数据可用性是每一位数据人都不可忽略的重要环节。

数据质量,主要从四个方面进行评估,即完整性、准确性、一致性和及时性,本文将会结合业务流程和数据处理流程,对这个四个方面进行详细的分析和讲解。

数据,最终是要服务于业务价值的,因此,本文不会单纯讲解理论,而是会从数据质量监控这一数据的应用为出发点,为大家分享居士对数据质量的思考。通过本文,你将获得如下几方面的知识点:

  1. 数据质量核心关注的要点
  2. 从数据计算链条理解,每一个环节会出现哪些数据质量问题
  3. 从业务逻辑理解,数据质量监控能带来的帮助
  4. 实现数据质量监控系统时要关注的点
  5. 数据质量监控面临的一些难点和解决思路

0x01 四大关注点

本节,先简单地聊一下数据质量需要关注的四个点:即完整性、准确性、一致性和及时性。这四个关注点,会在我们的数据处理流程的各个环节有所体现。

一、完整性

完整性是指数据的记录和信息是否完整,是否存在缺失的情况。数据的缺失主要包括记录的缺失和记录中某个字段信息的缺失,两者都会造成统计结果不准确,所以说完整性是数据质量最基础的保障。

简单来讲,如果要做监控,需要考虑两个方面:一是,数据条数是否少了,二是,某些字段的取值是否缺失。完整性的监控,多出现在日志级别的监控上,一般会在数据接入的时候来做数据完整性校验。

二、准确性

准确性是指数据中记录的信息和数据是否准确,是否存在异常或者错误的信息。

直观来讲就是看数据是否上准确的。一般准确性的监控多集中在对业务结果数据的监控,比如每日的活跃、收入等数据是否正常。

三、一致性

一致性是指同一指标在不同地方的结果是否一致。

数据不一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值