三角函数的正交性及其公式推导

这篇博客详细介绍了三角函数的正交性,通过公式展示和推导,解释了sin nx 和 sin mx、sin nx 和 cos mx、cos nx 和 cos mx 在[-π, π]上的积分结果。重点讲解了积化和差技巧的应用,以及特殊情况下cos mx 的平方积分等于π。适合理解傅立叶级数和相关理论的学习者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三角函数的正交性

废话不多说,直接上公式:

∫ − π π ( sin ⁡ n x ) ( sin ⁡ m x )   d x = 0 , 其 中   n ≠ m , n , m = 0 , 1 , 2 , ⋯ ∫ − π π ( sin ⁡ n x ) ( cos ⁡ m x )   d x = 0 , 其 中   n ≠ m , n , m = 0 , 1 , 2 , ⋯ ∫ − π π ( cos ⁡ n x ) ( cos ⁡ m x )   d x = 0 , 其 中   n ≠ m , n , m = 0 , 1 , 2 , ⋯ \begin{aligned} & \int_{-\pi}^{\pi} (\sin nx) (\sin mx)~ dx = 0 ,其中 ~ n \neq m,n,m=0,1,2,\cdots \\\\ & \int_{-\pi}^{\pi} (\sin nx) (\cos mx)~ dx = 0 ,其中 ~ n \neq m,n,m=0,1,2,\cdots \\\\ & \int_{-\pi}^{\pi} (\cos nx) (\cos mx)~ dx = 0 ,其中 ~ n \neq m,n,m=0,1,2,\cdots \\\\ \end{aligned} ππ(sinnx)(sinmx) dx=0 n=mn,m=0,1,2,ππ(sinnx)(cosmx) dx=0 n=mn,m=0,1,2,ππ(cosnx)(cosmx) dx=0 n=mn,m=0,1,2,

其他公式:
∫ − π π ( cos ⁡ m x ) ( cos ⁡ m x )   d x = π , 其 中   m = 0 , 1 , 2 , ⋯ \begin{aligned} & \int_{-\pi}^{\pi} (\cos mx) (\cos mx) ~dx = \pi,其中~m=0,1,2,\cdots \\\\ \end{aligned} ππ(cosmx)(cosmx) dx=π m=0,1,2,

公式推导

∫ − π π ( sin ⁡ n x ) ( sin ⁡ m x )   d x =    − 1 2 [ ∫ − π π cos ⁡ ( n + m ) x   d x − ∫ − π π cos ⁡ ( n − m ) x   d x ]      ( 积 化 和 差 ) =    − 1 2 [ 1 n + m sin ⁡ ( n + m ) x ∣ − π π − 1 n − m sin ⁡ ( n − m ) x ∣ − π π ] =    0 + 0 =    0 \begin{aligned} & \int_{-\pi}^{\pi} (\sin nx) (\sin mx)~ dx \\\\ = ~~& -\frac{1}{2} [ \int_{-\pi}^{\pi} \cos(n+m)x ~dx - \int_{-\pi}^{\pi} \cos(n-m) x~dx ] ~~~~(积化和差)\\\\ = ~~ &-\frac{1}{2} [ \frac{1}{n+m} \sin(n+m)x \mid_{-\pi}^{\pi} - \frac{1}{n-m} \sin(n-m)x \mid_{-\pi}^{\pi}] \\\\ = ~~ & 0+0 \\\\ = ~~ & 0 \end{aligned} =  =  =  =  ππ(sinnx)(sinmx) dx21[ππcos(n+m)x dxππcos(nm)x dx]    21[n+m1sin(n+m)xππnm1sin(nm)xππ]0+00

∫ − π π ( cos ⁡ n x ) ( cos ⁡ m x )   d x =    1 2 [ ∫ − π π cos ⁡ ( n − m ) x   d x + ∫ − π π cos ⁡ ( n + m ) x   d x ]      ( 积 化 和 差 ) =    1 2 [ 1 n − m sin ⁡ ( n − m ) x ∣ − π π + 1 n + m sin ⁡ ( n + m ) x ∣ − π π ] =    0 + 0 =    0 \begin{aligned} & \int_{-\pi}^{\pi} (\cos nx) (\cos mx)~ dx \\\\ = ~~& \frac{1}{2} [ \int_{-\pi}^{\pi} \cos(n-m)x ~dx + \int_{-\pi}^{\pi} \cos(n+m) x~dx ] ~~~~(积化和差)\\\\ = ~~ &\frac{1}{2} [ \frac{1}{n-m} \sin(n-m)x \mid_{-\pi}^{\pi} + \frac{1}{n+m} \sin(n+m)x \mid_{-\pi}^{\pi}] \\\\ = ~~ & 0+0 \\\\ = ~~ & 0 \end{aligned} =  =  =  =  ππ(cosnx)(cosmx) dx21[ππcos(nm)x dx+ππcos(n+m)x dx]    21[nm1sin(nm)xππ+n+m1sin(n+m)xππ]0+00

∫ − π π ( cos ⁡ m x ) ( cos ⁡ m x )   d x =    ∫ − π π 1 2 [ 1 + cos ⁡ 2 m x ] d x =    1 2 [ ∫ − π π 1   d x + ∫ − π π cos ⁡ 0 x cos ⁡ 2 m x   d x ] =    1 2 ∫ − π π 1   d x =    π \begin{aligned} & \int_{-\pi}^{\pi} (\cos mx) (\cos mx)~ dx \\\\ = ~~ & \int_{-\pi}^{\pi} \frac{1}{2} [1+\cos 2mx] dx\\\\ = ~~& \frac{1}{2} [\int_{-\pi}^{\pi} 1 ~dx + \int_{-\pi}^{\pi} \cos 0x \cos 2mx ~dx] \\\\ = ~~ & \frac{1}{2} \int_{-\pi}^{\pi} 1 ~dx \\\\ = ~~ & \pi \end{aligned} =  =  =  =  ππ(cosmx)(cosmx) dxππ21[1+cos2mx]dx21[ππ1 dx+ππcos0xcos2mx dx]21ππ1 dxπ

其他公式同理





参考资料

纯干货数学推导_傅里叶级数与傅里叶变换_Part1_三角函数的正交性:https://www.bilibili.com/video/BV1Et411R78v

考研必备数学公式大全:https://blog.csdn.net/zhaohongfei_358/article/details/106039576

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值