Pytorch入门实战(8):小样本学习实现图片分类(Few-shot Learning, Meta Learning)

本文介绍了如何使用PyTorch构建孪生网络,针对Omniglot数据集进行5-way5-shot小样本学习。模型通过对比样本对的相似度来判断类别,经过训练和验证,模型在未知类别上的正确率达到了70%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


免费链接: Blogger(需翻Q) , Open In colab , Github


本文内容涉及知识点

  1. 小样本学习的基本概念

本文内容

本文会使用Omniglot数据集训练一个孪生网络(相似网络),其可以用来判断两个图片的相似程度,通过该方式来实现小样本学习。

本文使用Omniglot的训练集来训练神经网络,使用其验证集来构造Support Set。本文会从验证集的每个类别中拿出5个样本作为Support Set,一共挑选10个类别

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值