【论文笔记】MacBert:Revisiting Pre-trained Models for Chinese Natural Language Processing

MacBERT是作者提出的新型中文预训练语言模型,通过使用N-gram和相似词替换策略改进了BERT的MLM任务,缓解了预训练与微调之间的差距。在多项NLP任务上表现出色,尤其在文档级机器阅读理解上达到最优。此外,SOP任务对性能提升贡献较小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


免费链接: Blogger(需翻Q)


相关信息

论文年份:2020年04月

论文地址:https://arxiv.org/pdf/2004.13922.pdf

论文代码(官方):https://github.com/ymcui/MacBERT

论文模型(Hugging Face): hfl/chinese-macbert-base ; hfl/chinese-macbert-large

论文阅读前提:熟悉BERT模型及其前置知识

一句话概括一下本文的内容:作者对原有的BERT的MLM任务进行了魔改,

### 关于 MacBERT 的详细介绍 #### 模型概述 MacBERT 是一种针对中文自然语言处理任务优化的预训练语言模型,其设计目标是在保持高性能的同时降低计算复杂度并提升效率。该模型通过移除 Segment Embedding 来简化结构,从而减少了不必要的参数开销[^1]。 #### 核心改进点 1. **去掉 Segment Embedding** 传统的 BERT 模型依赖 Segment Embeddings 表示句子间的顺序关系(如句对中的 A 和 B)。然而,在许多实际场景下,这种嵌入并未显著改善性能却增加了额外负担。因此,MacBERT 设计中省略了这一部分,进一步提升了运行速度和资源利用率。 2. **引入 MLM as Corrector (Masked Language Model)** 改进了原始 Masked Language Modeling (MLM) 技术,提出了新的修正机制——即让模型学习如何纠正错误而非单纯预测缺失词项。这种方式能够更有效地捕捉上下文中潜在语义关联性[^2]。 #### 论文与实现细节 - 发表时间及会议:EMNLP(Findings),2020年; - 领域应用方向:专注于解决各类 NLP 中涉及汉语表达的任务需求; - 开发者提供了开源项目地址以便开发者下载使用最新成果以及查阅具体算法描述文档链接如下所示: - GitHub 地址: https://github.com/ymcui/MacBERT ; - PDF 版本全文阅读可访问网址 :https://arxiv.org/pdf/2004.13922.pdf . #### 实际部署注意事项 当尝试利用 MindSpore Lite 平台加载并执行基于此架构构建的应用程序实例时可能会遇到某些特定类型的转换失败情况比如 `cast` 运算符无法完成从半精度浮点数(`FP16`)到布尔值(Boolean Type )之间的映射操作等问题 。这是因为当前框架仅允许有限几种数据格式间互相转变 ,例如整数类型(Integers like Int64 ,Int32 etc.) 或单双精度实数(Floats such as Float32 &Float16 )[^3]. --- ### 示例代码片段展示如何加载 MacBERT 模型进行推理 以下是 Python 编程环境下调用 Hugging Face Transformers 库来初始化一个预先训练好的小型版 MacBERT: ```python from transformers import BertTokenizer, BertForSequenceClassification # 加载分词器和分类模型 tokenizer = BertTokenizer.from_pretrained('hfl/macbert-base') model = BertForSequenceClassification.from_pretrained('hfl/macbert-base') text = "我喜欢吃苹果" inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_id = logits.argmax().item() print(f"Predicted Class ID: {predicted_class_id}") ``` 上述脚本展示了怎样快速设置环境并通过给定输入字符串获得相应的情感倾向类别编号结果。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值